...
首页> 外文期刊>Integration >Performance-aware predictive-model-based on-chip body-bias regulation strategy for an ULP multi-core cluster in 28 nm UTBB FD-SOI
【24h】

Performance-aware predictive-model-based on-chip body-bias regulation strategy for an ULP multi-core cluster in 28 nm UTBB FD-SOI

机译:28纳米UTBB FD-SOI中基于ULP多核集群的基于性能预测模型的片上身体偏置调节策略

获取原文
获取原文并翻译 | 示例

摘要

The performance and reliability of Ultra-Low-Power (ULP) computing platforms are adversely affected by environmental temperature and process variations. Mitigating the effect of these phenomena becomes crucial when these devices operate near-threshold, due to the magnification of process variations and to the strong temperature inversion effect that affects advanced technology nodes in low-voltage corners, which causes huge overhead due to margining for timing closure. Supporting an extended range of reverse and forward body-bias, UTBB FD-SOI technology provides a powerful knob to compensate for such variations. In this work we propose a methodology to maximize energy efficiency at run-time exploiting body biasing on a ULP platform operating near-threshold. The proposed method relies on on-line performance measurements by means of Process Monitoring Blocks (PMBs) coupled with an on-chip low-power body bias generator. We correlate the measurement performed by the PMBs to the maximum achievable frequency of the system, deriving a predictive model able to estimate it with an error of 9.7% at 0.7 V. To minimize the effect of process variations we propose a calibration procedure that allows to use a PMB model affected by only the temperature-induced error, which reduces the frequency estimation error by 2.4x (from 9.7% to 4%). We finally propose a controller architecture relying on the derived models to automatically regulate at run-time the body bias voltage. We demonstrate that adjusting the body bias voltage against environmental temperature variations leads up to 2X reduction in the leakage power and a 15% improvement on the global energy consumption when the system operates at 0.7 V and 170 MHz.
机译:超低功耗(ULP)计算平台的性能和可靠性受到环境温度和工艺变化的不利影响。当这些器件工作在接近阈值时,由于工艺变化的放大以及强烈的温度反转效应会影响低压拐角处的先进技术节点,因此缓解这些现象的影响变得至关重要,这会由于时序裕量而导致巨大的开销关闭。 UTBB FD-SOI技术支持更大范围的前后身体偏置,可提供强大的旋钮来补偿这种变化。在这项工作中,我们提出了一种方法,该方法可通过在接近阈值的ULP平台上利用车身偏置来在运行时最大化能源效率。所提出的方法依赖于通过过程监控块(PMB)与片上低功耗主体偏置发生器耦合进行的在线性能测量。我们将PMB执行的测量与系统可达到的最大频率相关联,得出能够在0.7 V时误差为9.7%的情况下对其进行估算的预测模型。为了最大程度地减小过程变化的影响,我们提出了一种校准程序,该程序可实现以下目的:使用仅受温度引起的误差影响的PMB模型,从而将频率估计误差降低2.4倍(从9.7%降至4%)。我们最终提出了一种控制器架构,该架构依赖于派生的模型在运行时自动调节车身偏置电压。我们证明了针对环境温度变化调整车身偏置电压可以使泄漏功率降低2倍,并且当系统在0.7 V和170 MHz的频率下工作时,全球能源消耗可提高15%。

著录项

  • 来源
    《Integration 》 |2020年第5期| 194-207| 共14页
  • 作者

  • 作者单位

    ETHZ Integrated Syst Lab Gloriastr 35 CH-8092 Zurich Switzerland;

    Univ Bologna DEI Via Risorgimento 2 I-40136 Bologna Italy;

    SOITEC Crolles France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号