首页> 外文期刊>Integral Transforms and Special Functions >Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions
【24h】

Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions

机译:具有广义分数导数算子和Mittag-Leffler类型函数的分数和运算演算

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study a certain family of generalized Riemann-Liouville fractional derivative operators of order α and type β, which were introduced and investigated in several earlier works [R. Hilfer (ed.), Applications of Fractional Calculus in Physics, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 2000; R. Hilfer, Fractional time evolution, in Applications of Fractional Calculus in Physics, R. Hilfer, ed., World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 2000, pp. 87-130; R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials, J. Chem. Phys. 284 (2002), pp. 399-408; R. Hilfer, Threefold introduction to fractional derivatives, in Anomalous Transport: Foundations and Applications, R. Klages, G. Radons, and I.M. Sokolov, eds., Wiley-VCH Verlag, Weinheim, 2008, pp. 17-73; R. Hilfer and L. Anton, Fractional master equations and fractal time random walks, Phys. Rev. E 51 (1995), pp. R848-R851; R. Hilfer, Y. Luchko, and Ž. Tomovski, Operational method for solution of the fractional differential equations with the generalized Riemann-Liouville fractional derivatives, Fract. Calc. Appl. Anal. 12 (2009), pp. 299-318; F. Mainardi and R. Gorenflo, Time-fractional derivatives in relaxation processes: A tutorial survey, Fract. Calc. Appl. Anal. 10 (2007), pp. 269-308; T. Sandev and Ž. Tomovski, General time fractional wave equation for a vibrating string, J. Phys. A Math. Theor. 43 (2010), 055204; H.M. Srivastava and Ž. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput. 211 (2009), pp. 198-210]. In particular, we derive various compositional properties, which are associated with Mittag-Leffler functions and Hardy-type inequalities for the generalized fractional derivative operator . Furthermore, by using the Laplace transformation methods, we provide solutions of many different classes of fractional differential equations with constant and variable coefficients and some general Volterra-type differintegral equations in the space of Lebesgue integrable functions. Particular cases of these general solutions and a brief discussion about some recently investigated fractional kinetic equations are also given.View full textDownload full textKeywordsRiemann-Liouville fractional derivative operator, generalized Mittag-Leffler function, Hardy-type inequalities, Laplace transform method, Volterra differintegral equations, fractional differential equations, fractional kinetic equations, Lebesgue integrable functions, Fox-Wright hypergeometric functions 2000 Mathematics Subject Classification Primary: 26A33, 33C20, 33E12, Secondary: 47B38, 47G10Related var addthis_config = { ui_cobrand: "Taylor & Francis Online", services_compact: "citeulike,netvibes,twitter,technorati,delicious,linkedin,facebook,stumbleupon,digg,google,more", pubid: "ra-4dff56cd6bb1830b" }; Add to shortlist Link Permalink http://dx.doi.org/10.1080/10652461003675737
机译:在本文中,我们研究了阶r和阶β的广义Riemann-Liouville分数阶导数算子的某些族,这些族在几个较早的著作中进行了介绍和研究[R. Hilfer(编),分数微积分在物理学中的应用,世界科学出版公司,新加坡,新泽西,伦敦和香港,2000年; R. Hilfer,分数时间演化,《分数微积分在物理学中的应用》,R。Hilfer编,世界科学出版公司,新加坡,新泽西,伦敦和香港,2000年,第87-130页; R. Hilfer,玻璃成型材料中分数时间演化的实验证据,J。Chem。物理284(2002),第399-408页; R.Hilfer,分数导数的三重导论,《反常运输:基础与应用》,R.Klages,G.Radons和I.M.Sokolov编,Wiley-VCH Verlag,Weinheim,2008年,第17-73页。 R. Hilfer和L. Anton,分数阶主方程和分形时间随机游动,物理。 E 51(1995),第R848-R851页; R. Hilfer,Y。Luchko和Ž。 Tomovski,用广义Riemann-Liouville分数阶导数解分数微分方程的运算方法,Fract。计算应用肛门12(2009),第299-318页; F. Mainardi和R. Gorenflo,松弛过程中的时间分数导数:教程调查,分形。计算应用肛门10(2007),第269-308页; T. Sandev和Ž。 Tomovski,振动弦的一般时间分数波方程,J。Phys。数学。理论。 43(2010),055204; H.M. Srivastava和Ž。 Tomovski,分数积分,带有积分运算符,在内核Appl中包含广义Mittag-Leffler函数。数学。计算211(2009),第198-210页]。特别是,我们导出了各种成分性质,这些成分性质与广义分数导数算子的Mittag-Leffler函数和Hardy型不等式有关。此外,通过使用Laplace变换方法,我们提供了具有Lebesgue可积函数空间的具有常数和可变系数的许多不同类别的分数阶微分方程和一些一般的Volterra型微分方程的解。这些一般解决方案的特殊情况以及对一些最近研究的分数阶动力学方程的简要讨论也可以找到。 ,分数阶微分方程,分数阶动力学方程,Lebesgue可积函数,Fox-Wright超几何函数2000数学主题分类:初等:26A33、33C20、33E12,中学:47B38、47G10相关的var addthis_config = {ui_cobrand:“ Taylor&Francis Online”,services_compact “ citeulike,netvibes,twitter,technorati,美味,linkedin,facebook,stumbleupon,digg,google,更多”,发布:“ ra-4dff56cd6bb1830b”};添加到候选列表链接永久链接http://dx.doi.org/10.1080/10652461003675737

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号