首页> 外文期刊>Integral Equations and Operator Theory >The K-Theory of C *-Algebras with Finite Dimensional Irreducible Representations
【24h】

The K-Theory of C *-Algebras with Finite Dimensional Irreducible Representations

机译:具有有限维不可约表示的C * -代数的K理论

获取原文
获取原文并翻译 | 示例

摘要

We study the K-theory of unital C *-algebras A satisfying the condition that all irreducible representations are finite and of some bounded dimension. We construct computational tools, but show that K-theory is far from being able to distinguish between various interesting examples. For example, when the algebra A is n-homogeneous, i.e., all irreducible representations are exactly of dimension n, then K *(A) is the topological K-theory of a related compact Hausdorff space, this generalises the classical Gelfand-Naimark theorem, but there are many inequivalent homogeneous algebras with the same related topological space. For general A we give a spectral sequence computing K *(A) from a sequence of topological K-theories of related spaces. For A generated by two idempotents, this becomes a 6-term long exact sequence.
机译:我们研究满足所有不可约表示都是有限且有界的条件的单位C *代数A的K理论。我们构建了计算工具,但表明K理论远不能区分各种有趣的示例。例如,当代数A是n齐次的,即所有不可约表示都恰好是n维时,则K * (A)是相关紧Hausdorff空间的拓扑K理论,这概括了经典Gelfand-Naimark定理,但是有许多不等价的同构代数,它们具有相同的相关拓扑空间。对于一般的A,我们给出了根据相关空间的拓扑K理论序列计算K * (A)的光谱序列。对于由两个幂等式生成的A,这变成6项长的精确序列。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号