首页> 外文期刊>Integral Equations and Operator Theory >Abstract Interpolation in Vector-Valued de Branges–Rovnyak Spaces
【24h】

Abstract Interpolation in Vector-Valued de Branges–Rovnyak Spaces

机译:向量值de Branges–Rovnyak空间中的抽象插值

获取原文
获取原文并翻译 | 示例

摘要

Following ideas from the Abstract Interpolation Problem of Katsnelson et al. (Operators in spaces of functions and problems in function theory, vol 146, pp 83–96, Naukova Dumka, Kiev, 1987) for Schur class functions, we study a general metric constrained interpolation problem for functions from a vector-valued de Branges–Rovnyak space H(KS){mathcal{H}(K_S)} associated with an operator-valued Schur class function S. A description of all solutions is obtained in terms of functions from an associated de Branges–Rovnyak space satisfying only a bound on the de Branges–Rovnyak-space norm. Attention is also paid to the case that the map which provides this description is injective. The interpolation problem studied here contains as particular cases (1) the vector-valued version of the interpolation problem with operator argument considered recently in Ball et al. (Proc Am Math Soc 139(2), 609–618, 2011) (for the nondegenerate and scalar-valued case) and (2) a boundary interpolation problem in H(KS){mathcal{H}(K_S)}. In addition, we discuss connections with results on kernels of Toeplitz operators and nearly invariant subspaces of the backward shift operator.
机译:遵循Katsnelson等人的抽象插值问题的思想。 (关于函数空间中的算子和函数论的问题,在函数论中,第146卷,第83–96页,Naukova Dumka,基辅,1987年),我们研究了向量值de Branges中函数的一般度量约束插值问题,与运算符值的Schur类函数S关联的Rovnyak空间H(K S ){mathcal {H}(K_S)}。根据相关de Brange的函数获得所有解的描述–Rovnyak空间仅满足de Branges –Rovnyak空间范数的一个界。还注意提供此描述的地图是内射的情况。此处研究的插值问题包括(1)特殊情况下的插值问题的向量值版本,其中Ball等人最近考虑了算子参数。 (Proc Am Math Soc 139(2),609–618,2011)(针对非简并标量值的情况)和(2)H(K S ){mathcal { H}(K_S)}。另外,我们讨论与Toeplitz运算符的内核以及后向移位运算符的几乎不变子空间上的结果有关的连接。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号