The first part of this paper is devoted to the study of FN{Phi_N} the orthogonal polynomials on the circle, with respect to a weight of type f = (1 − cos θ) α c where c is a sufficiently smooth function and ${alpha > -frac{1}{2}}${alpha > -frac{1}{2}}. We obtain an asymptotic expansion of the coefficients F*(p)N(1){Phi^{*(p)}_{N}(1)} for all integer p where F*N{Phi^*_N} is defined by F*N (z) = zN [`(F)]N(frac1z) (z ¹ 0){Phi^*_N (z) = z^N bar Phi_N(frac{1}{z}) (z not=0)}. These results allow us to obtain an asymptotic expansion of the associated Christofel–Darboux kernel, and to compute the distribution of the eigenvalues of a family of random unitary matrices. The proof of the results related to the orthogonal polynomials are essentially based on the inversion of the Toeplitz matrix associated to the symbol f.
展开▼
机译:本文的第一部分致力于研究F N sub> {Phi_N}圆上正交多项式,关于权重f =(1-cosθ)α sup> c,其中c是足够光滑的函数,并且$ {alpha> -frac {1} {2}} $ {alpha> -frac {1} {2}}。我们获得所有系数F *(p) sup> N sub>(1){Phi ^ {*(p)} _ {N}(1)}的渐近展开整数p,其中F * sup> N sub> {Phi ^ * _ N}由F * sup> N sub>定义(z)= z N sup> [`(F)] N sub>(frac1z)(z¹0){Phi ^ * _ N(z)= z ^ N bar Phi_N(frac {1} {z})(z not = 0)}。这些结果使我们能够获得相关联的Christofel–Darboux核的渐近展开,并计算一族随机family矩阵的特征值的分布。与正交多项式有关的结果的证明基本上基于与符号f相关的Toeplitz矩阵的求逆。
展开▼