首页> 外文期刊>IEEE instrumentation & measurement magazine >Responding to Illegal Activities Along the Canadian Coastlines Using Reinforcement Learning
【24h】

Responding to Illegal Activities Along the Canadian Coastlines Using Reinforcement Learning

机译:沿着加拿大海岸线的非法活动使用加强学习

获取原文
获取原文并翻译 | 示例

摘要

Machine learning (ML) algorithms can prove to be instrumental in certain complex ill-con-ditioned systems when inserted as a middle layer to interface low-level hardware, such as sensors and actuators, and high-level decision-making kernels. Such an interface provides a secondary, or supervisory, conditioning layer that would enhance the system's robustness in the face of various types of uncertainties and disturbances. This article elaborates how ML can leverage the solution of a contemporary problem related to the security of maritime domains.
机译:机器学习(ML)算法在插入中间层以接口低级硬件(例如传感器和执行器)和高级决策核时,可以在某些复杂的均匀性型系统中被证明是乐器。这种界面提供了一种次要或监控的调节层,其将在面对各种类型的不确定性和干扰面上增强系统的鲁棒性。本文详细阐述了ML如何利用与海上域安全相关的当代问题的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号