首页> 外文期刊>Instrumentation and Measurement, IEEE Transactions on >Particle Swarm Optimization Based Active Noise Control Algorithm Without Secondary Path Identification
【24h】

Particle Swarm Optimization Based Active Noise Control Algorithm Without Secondary Path Identification

机译:基于粒子群优化的主动噪声控制算法,无需二次路径识别

获取原文
获取原文并翻译 | 示例

摘要

In this paper, particle swarm optimization (PSO) algorithm, which is a nongradient but simple evolutionary computing-type algorithm, is proposed for developing an efficient active noise control (ANC) system. The ANC is conventionally used to control low-frequency acoustic noise by employing a gradient-optimization-based filtered-X least mean square (FXLMS) algorithm. Hence, there is a possibility that the performance of the ANC may be trapped by local minima problem. In addition, the conventional FXLMS algorithm needs prior identification of the secondary path. The proposed PSO-based ANC algorithm does not require the estimation of secondary path transfer function unlike FXLMS algorithm and, hence, is immune to time-varying nature of the secondary path. In this investigation, a small modification is incorporated in the conventional PSO algorithm to develop a conditional reinitialized PSO algorithm to suit to the time-varying plants of the ANC system. Systematic computer simulation studies are carried out to evaluate the performance of the new PSO-based ANC algorithm.
机译:本文提出了一种粒子群优化算法(PSO),它是一种非梯度但简单的进化计算类型算法,用于开发有效的主动噪声控制(ANC)系统。 ANC通常通过采用基于梯度优化的滤波X最小均方(FXLMS)算法来控制低频声噪声。因此,ANC的性能可能会被局部最小值问题所困。此外,常规的FXLMS算法需要事先确定辅助路径。所提出的基于PSO的ANC算法与FXLMS算法不同,不需要估计辅助路径传递函数,因此不受辅助路径随时间变化的影响。在这项研究中,对常规PSO算法进行了较小的修改,以开发有条件的重新初始化PSO算法,以适合ANC系统的时变工厂。进行了系统的计算机仿真研究,以评估新的基于PSO的ANC算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号