首页> 外文期刊>IEEE Transactions on Instrumentation and Measurement >Curve-Fitting Algorithms Versus Neural Networks When Applied for Estimation of Wavelength and Power in DWDM Systems
【24h】

Curve-Fitting Algorithms Versus Neural Networks When Applied for Estimation of Wavelength and Power in DWDM Systems

机译:曲线拟合算法和神经网络在DWDM系统中的波长和功率估计中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper is on optical performance monitors for applications in dense wavelength-division multiplexing (DWDM) communication systems. Two algorithms for estimation of central wavelength and signal power of DWDM channels, on the basis on raw measurement data provided by a low-resolution spectrometric transducer, are compared. The first algorithm is based on the use of a curve-fitting and constrained-optimization technique; the second on application of a superposition of simple feedforward neural networks. The comparison is carried out using semisyn-thetic data. Conclusions are drawn concerning the applicability of compared algorithms in engineering practice.
机译:本文是关于在密集波分复用(DWDM)通信系统中应用的光学性能监视器。在低分辨率光谱传感器提供的原始测量数据的基础上,比较了两种估计DWDM通道中心波长和信号功率的算法。第一种算法基于曲线拟合和约束优化技术的使用;第二点是简单前馈神经网络的叠加应用。使用半合成数据进行比较。得出了有关比较算法在工程实践中的适用性的结论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号