首页> 外文期刊>Instrumentation and Measurement, IEEE Transactions on >Particle-Filtering-Based Prognosis Framework for Energy Storage Devices With a Statistical Characterization of State-of-Health Regeneration Phenomena
【24h】

Particle-Filtering-Based Prognosis Framework for Energy Storage Devices With a Statistical Characterization of State-of-Health Regeneration Phenomena

机译:具有健康状态再生现象统计特征的基于粒子过滤的储能设备预测框架

获取原文
获取原文并翻译 | 示例

摘要

This paper presents the implementation of a particle-filtering-based prognostic framework that allows estimating the state of health (SOH) and predicting the remaining useful life (RUL) of energy storage devices, and more specifically lithium-ion batteries, while simultaneously detecting and isolating the effect of self-recharge phenomena within the life-cycle model. The proposed scheme and the statistical characterization of capacity regeneration phenomena are validated through experimental data from an accelerated battery degradation test and a set of ad hoc performance measures to quantify the precision and accuracy of the RUL estimates. In addition, a simplified degradation model is presented to analyze and compare the performance of the proposed approach in the case where the optimal solution (in the mean-square-error sense) can be found analytically.
机译:本文介绍了基于粒子过滤的预测框架的实现,该框架可估算能量存储设备(尤其是锂离子电池)的健康状态(SOH)并预测其剩余使用寿命(RUL),同时检测并检测和在生命周期模型中隔离自充电现象的影响。拟议的方案和容量再生现象的统计表征通过加速电池退化测试的实验数据和一组特定的性能指标(用于量化RUL估算的准确性和准确性)得到验证。此外,提出了一种简化的退化模型,以分析和比较在可以找到最优解(均方误差意义上)的情况下所提出方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号