首页> 外文期刊>IEEE Transactions on Instrumentation and Measurement >An Antinoise-Folding Algorithm for the Recovery of Biomedical Signals From Noisy Measurements
【24h】

An Antinoise-Folding Algorithm for the Recovery of Biomedical Signals From Noisy Measurements

机译:从噪声测量中恢复生物医学信号的抗噪折叠算法

获取原文
获取原文并翻译 | 示例

摘要

Sparse sampling (SS) has shown a significant promise for the recovery of biomedical signals from noisy measurements. In practice, the premeasurement noise, i.e., the noise associated with the unprocessed signal is often ignored. At large compression, a small perturbation in the raw signal may degrade the signal-to-noise ratio by a significant amount due to the noise-folding effect. In this paper, a new antinoise-folding sparse recovery framework is proposed, which is blind-to-noise-statistics, and it does not require any prior warm-up step to select the starting point. The source signal is recovered from the noisy measurements by solving a nonconvex regularization-based constrained minimization problem followed by a data-adaptive Stein’s unbiased risk estimate-based denoising process. The constrained problem is linearized by employing the method of majorization–minorization. Furthermore, the sparse recovery analysis of the new algorithm is established. The numerical test results obtained by employing noisy photoplethysmogram data and real-world fetal-electrocardiogram data show the superior performance of the proposed method as compared with various state-of-the-art SS methods.
机译:稀疏采样(SS)已显示出从噪声测量中恢复生物医学信号的重要前景。实际上,通常忽略了预测量噪声,即与未处理信号相关的噪声。在大压缩下,由于噪声折叠效应,原始信号中的小扰动可能会使信噪比降低很多。在本文中,提出了一种新的抗噪稀疏恢复框架,该框架是无噪声统计的,不需要任何预先的热身步骤即可选择起点。通过解决基于非凸正则化的约束最小化问题,然后进行数据自适应的Stein基于无偏风险估计的去噪过程,可以从噪声测量中恢复源信号。通过采用主化-次化方法将约束问题线性化。此外,建立了新算法的稀疏恢复分析。通过使用嘈杂的光体积描记图数据和真实的胎儿心电图数据获得的数值测试结果表明,与各种最新的SS方法相比,该方法具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号