首页> 外文期刊>IEEE Transactions on Instrumentation and Measurement >Robust Power System State Estimation With Minimum Error Entropy Unscented Kalman Filter
【24h】

Robust Power System State Estimation With Minimum Error Entropy Unscented Kalman Filter

机译:强大的电源系统状态估计,最小误差熵无创的卡尔曼滤波器

获取原文
获取原文并翻译 | 示例

摘要

The unscented Kalman filter (UKF) provides a powerful tool for power system forecasting-aided state estimation (FASE). However, when the power systems are affected by the abnormal operating situations, i.e., the non-Gaussian communication noises, sudden loads or state changes, and instrument failures, the original UKF based on the minimum mean square error (MMSE) criterion may suffer from performance degradation. In contrast to the MMSE criterion, the minimum error entropy (MEE) exhibits the robustness with respect to complex non-Gaussian disturbances. In this article, we develop a new unscented Kalman-type filter based on the MEE criterion, termed MEE-UKF. To derive the MEE-UKF, a statistical linearization approach is adopted in the augmented model such that the state and measurement errors are combined in the MEE cost function simultaneously. Then, a fixed-point iteration algorithm is used to recursively update the posterior estimates and covariance matrix. Apart from the impulsive noises, the MEE-UKF can deal with complex multimodal distribution noises in both process and measurement. The high accuracy and strong robustness of MEE-UKF are confirmed by the simulation results on IEEE 14, 30, and 57 bus test systems under different non-Gaussian disturbances.
机译:Unscented Kalman滤波器(UKF)为电力系统预测辅助状态估计(Fase)提供了强大的工具。然而,当电力系统受异常操作情况的影响时,即非高斯通信噪声,突然的负载或状态变化,以及仪器故障,基于最小均方误差(MMSE)标准的原始UKF可能会受到影响性能下降。与MMSE标准相比,最小误差熵(MEE)对复杂的非高斯干扰呈现鲁棒性。在本文中,我们基于Mee标准开发了一个新的Uncented Kalman型过滤器,称为Mee-UKF。为了获得MEE-UKF,在增强模型中采用统计线性化方法,使得状态和测量误差同时在MEE成本函数中组合。然后,使用固定点迭代算法用于递归更新后估计和协方差矩阵。除了冲动的噪音之外,Mee-Ukf可以在过程和测量中处理复杂的多模式分布噪声。在不同的非高斯干扰下的IEEE 14,30和57总线测试系统的仿真结果确认了Mee-UKF的高精度和强大的稳健性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号