机译:强大的电源系统状态估计,最小误差熵无创的卡尔曼滤波器
Xi An Jiao Tong Univ Inst Artificial Intelligence & Robot Xian 710049 Peoples R China;
Xi An Jiao Tong Univ Inst Artificial Intelligence & Robot Xian 710049 Peoples R China;
Southwest Univ Coll Elect & Informat Engn Chongqing 400715 Peoples R China|Chongqing Key Lab Nonlinear Circuits & Intelligen Chongqing 400715 Peoples R China;
Xian Univ Technol Sch Automat & Informat Engn Xian 710049 Peoples R China;
Xi An Jiao Tong Univ Inst Artificial Intelligence & Robot Xian 710049 Peoples R China;
Entropy; Power system dynamics; Kalman filters; State estimation; Noise measurement; Covariance matrices; Forecasting-aided state estimation (FASE); minimum error entropy (MEE); non-Gaussian disturbances; unscented Kalman filter (UKF);
机译:广义熵损失的无味卡尔曼滤波器用于鲁棒电力系统预测状态估计
机译:具有未知噪声统计量的鲁棒无味卡尔曼滤波器用于电力系统动态状态估计
机译:鲁棒
机译:基于最小误差熵卡尔曼滤波的鲁棒INS / GPS耦合导航
机译:使用带有CompactRIO实现的扩展卡尔曼滤波器的三电源电力系统状态估计。
机译:自适应扩展卡尔曼滤波器具有鲁棒电力系统状态估计的固定损耗
机译:自适应扩展卡尔曼滤波器,具有鲁棒电力系统状态估计的固定损耗