首页> 外文期刊>IEEE Transactions on Instrumentation and Measurement >Active Contour-Based Method for Finger-Vein Image Segmentation
【24h】

Active Contour-Based Method for Finger-Vein Image Segmentation

机译:基于主动轮廓的手指静脉图像分割方法

获取原文
获取原文并翻译 | 示例

摘要

Suffering from uneven illumination and variation of finger position, it is still a tough challenge to effectively distinguish the vein networks and nonvenous regions in a finger-vein image. Methods based on active contour have achieved an excellent result in medical image segmentation, despite facing several challenges such as vulnerable to the initial contour and prone to local minimum. In this article, we propose a novel method which is effective for finger-vein image segmentation based on active contour. Since venous and nonvenous areas in captured finger-vein images are hard to distinguish, we design a dehazing algorithm and an edge fitting term to improve the segmentation procedure. Moreover, we employ the kernel fuzzy C-means (KFCM) algorithm to conduct the initialization, which is able to solve the problem that the active contour-based methods are susceptible to initial contours. The experimental results show that compared with latest methods, the proposed method achieves a better performance in segmenting finger-vein images and is able to improve the recognition accuracy of finger-vein identification system.
机译:患有不均匀的照明和手指位置的变化,有效地区分静脉网络和诸如手指静脉图像中的静脉网络和莽莽地区仍然是一个艰难的挑战。尽管面对初始轮廓(易受局部轮廓和局部最小),但基于主动轮廓的基于活性轮廓的方法已经达到了医学图像分割的优异结果。在本文中,我们提出了一种基于主动轮廓的手指静脉图像分割有效的新方法。由于捕获的手指静脉图像中的静脉和莽莽地区很难区分,因此我们设计了脱水算法和边缘配件术语以改善分割过程。此外,我们采用内核模糊C型(KFCM)算法进行初始化,能够解决基于主动轮廓的方法易受初始轮廓的问题的问题。实验结果表明,与最新方法相比,所提出的方法在分割手指静脉图像中实现了更好的性能,并且能够提高手指静脉识别系统的识别准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号