首页> 外文期刊>IEEE Transactions on Instrumentation and Measurement >Fault Diagnosis of Hydraulic Seal Wear and Internal Leakage Using Wavelets and Wavelet Neural Network
【24h】

Fault Diagnosis of Hydraulic Seal Wear and Internal Leakage Using Wavelets and Wavelet Neural Network

机译:使用小波和小波神经网络的液压密封磨损和内部泄漏的故障诊断

获取原文
获取原文并翻译 | 示例

摘要

The piston seal wear in hydraulic cylinder is one of the main factors that give rise to an internal leakage. This paper focuses on diagnosing piston seal wear and subsequent internal leakage from a double acting seal combination seal used in the support oil cylinder of a QY110 mobile crane. Wavelet transform is applied as a feature extractor to transform the raw oil pressure data into a feature vector consisting of wavelet packet subband energy, energy entropy, energy variance, and root mean square of the wavelet detailed coefficient d(4). This feature vector feeds into the wavelet neural network serving as a pattern recognizer for automatically classifying the fault patterns. We demonstrate with the leakage experiment and simulation data that the proposed fault detection and identification (FDI) scheme is capable of effectively detecting and classifying the piston seal wear with excellent accuracy. Our comparison studies reveal that the proposed FDI tandem produces much more accurate result than that from back-propagation neural network. This paper is supplement to and enrichment of existing studies on fault simulation and diagnosis associated with hydraulic cylinder leakage problems.
机译:液压缸中的活塞密封件是导致内部泄漏的主要因素之一。本文侧重于诊断QY110移动起重机支撑油缸中的双作用密封组合密封件的活塞密封磨损和随后的内部泄漏。将小波变换应用于特征提取器,以将原始油压数据转换为由小波分组子带能量,能量熵,能量方差和小波的小波详细系数d(4)的均线平方组成的特征向量。该特征向量源进入小波神经网络,作为模式识别器,用于自动对故障模式进行分类。我们展示了泄漏实验和模拟数据,即所提出的故障检测和识别(FDI)方案能够有效地检测和分类活塞密封磨损,以优异的精度。我们的比较研究表明,所提出的FDI串联产生比从后传播神经网络的结果更准确的结果。本文对现有的液压缸泄漏问题进行了补充和富集现有的故障模拟和诊断研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号