首页> 外文期刊>Instrumentation and Measurement, IEEE Transactions on >Sparse Time-Frequency Representation for Incipient Fault Diagnosis of Wind Turbine Drive Train
【24h】

Sparse Time-Frequency Representation for Incipient Fault Diagnosis of Wind Turbine Drive Train

机译:风力机传动系统初期故障诊断的稀疏时频表示

获取原文
获取原文并翻译 | 示例

摘要

As wind power attracts increasing attention and wind turbines (WTs) capacity expands, fault diagnosis of WT is playing a more and more important role in improving reliability, minimizing down time, reducing maintenance costs, and providing reliable power generation. In this paper, a novel sparse time-frequency representation (STFR) method is proposed to increase the diagnostic precision of incipient faults. The proposed method can be applied once the condition is detected as abnormal according to the VDI3834 vibration threshold standard in WT fault diagnosis systems. The proposed method is a novel signal representation method based on the sparse representation theory and Wigner-Ville distribution (WVD), which can overcome the limitations of traditional basis functions expansion and time-frequency analysis methods. In this method, a union of redundant dictionary (URD) is constructed on the basis of the underlying prior information of the oscillate characteristics with multicomponent coupling effect and different morphological waveforms. Therefore, the vibration signal can be sparsely represented over the URD. Then, the sparse coefficients and corresponding atoms can be obtained by solving the basis pursuit denoising problem via alternating direction method of multipliers. Based on the combination of the WVD of each atom and corresponding sparse coefficient, the time-frequency distribution of the vibration signal can be obtained. To verify the effectiveness of the STFR method, a simulation and two field tests in the wind farm are performed. The comparison results with state-of-the-art methods illustrate the superiority and robustness of the proposed method in the engineering applications.
机译:随着风能越来越受到关注,并且风力涡轮机(WT)的容量不断扩大,WT的故障诊断在提高可靠性,减少停机时间,降低维护成本以及提供可靠的发电方面发挥着越来越重要的作用。本文提出了一种新的稀疏时频表示方法,以提高早期故障的诊断精度。一旦根据WT故障诊断系统中的VDI3834振动阈值标准检测到异常情况,便可以应用所提出的方法。该方法是一种基于稀疏表示理论和Wigner-Ville分布(WVD)的新颖信号表示方法,可以克服传统基函数扩展和时频分析方法的局限性。在该方法中,基于具有多分量耦合效应和不同形态波形的振荡特性的基础先验信息,构造了冗余字典联合(URD)。因此,可以在URD上稀疏表示振动信号。然后,通过乘数的交替方向法求解基本追踪去噪问题,可以获得稀疏系数和对应的原子。基于每个原子的WVD和相应的稀疏系数的组合,可以获得振动信号的时频分布。为了验证STFR方法的有效性,在风电场中进行了仿真和两次现场测试。与最新方法的比较结果说明了该方法在工程应用中的优越性和鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号