首页> 外文期刊>IEEE Transactions on Instrumentation and Measurement >Autoregressive spectral estimation by application of the Burg algorithm to irregularly sampled data
【24h】

Autoregressive spectral estimation by application of the Burg algorithm to irregularly sampled data

机译:通过对不规则采样的数据应用Burg算法进行自回归谱估计

获取原文
获取原文并翻译 | 示例

摘要

Many methods have been developed for spectral analysis of irregularly sampled data. Currently, popular methods such as Lomb-Scargle and resampling tend to be biased at higher frequencies. Slotting methods fail to consistently produce a spectrum that is positive for all frequencies. In this paper, a new estimator is introduced that applies the Burg algorithm for autoregressive spectral estimation to unevenly spaced data. The new estimator can be perceived as searching for sequences of data that are almost equidistant, and then analyzing those sequences using the Burg algorithm for segments. The estimated spectrum is guaranteed to be positive. If a sufficiently large data set is available, results can be accurate up to relatively high frequencies.
机译:已经开发出许多方法来对不规则采样数据进行频谱分析。当前,诸如Lomb-Scargle和重采样之类的流行方法往往偏向更高的频率。开槽方法不能始终如一地产生对于所有频率都是正的频谱。在本文中,介绍了一种新的估计器,该估计器将Burg算法用于自回归光谱估计到不均匀分布的数据。新的估算器可以看作是搜索几乎等距的数据序列,然后使用Burg算法对片段进行分析。估计频谱保证为正。如果有足够大的数据集,则结果可以精确到相对较高的频率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号