首页> 外文期刊>INFORMS journal on computing >Simple Pattern Minimality Problems: Integer Linear Programming Formulations and Covering-Based Heuristic Solving Approaches
【24h】

Simple Pattern Minimality Problems: Integer Linear Programming Formulations and Covering-Based Heuristic Solving Approaches

机译:简单的模式最小问题:整数线性规划配方和基于覆盖的启发式解决方法

获取原文
获取原文并翻译 | 示例

摘要

The simple pattern minimality problem (SPMP) represents a central problem in the logical analysis of data and association rules mining, and it finds applications in several fields as logic synthesis, reliability analysis, and automated reasoning. It consists of determining the minimum number of patterns explaining all the observations of a data set, that is, a Boolean logic formula that is true for all the elements of the data set and false for all the unseen observations. We refer to this problem as covering SPMP (C-SPMP), because each observation can be explained (covered) by more than one pattern. Starting from a real industrial application, we also define a new version of the problem, and we refer to it as partitioning SPMP (P-SPMP), because each observation has to be covered just once. Given a propositional formula or a truth table, C-SPMP and P-SPMP coincide exactly with the problem of determining the minimum disjunctive and minimum exclusive disjunctive normal form, respectively. Both problems are known to be NP-hard and have been generally tackled by heuristic methods. In this context, the contribution of this work is twofold. On one side, it provides two original integer linear programming formulations for the two variants of the SPMP. These formulations exploit the concept of Boolean hypercube to build a graph representation of the problems and allow to exactly solve instances with more than 1,000 observations by using an MIP solver. On the other side, two effective and fast heuristics are proposed to solve relevant size instances taken from literature (SeattleSNPs) and from the industrial database. The proposed methods do not suffer from the same dimensional drawbacks of the methods present in the literature and outperform either existing commercial and freeware logic tools or the available industrial solutions in the number of generated patterns and/or in the computational burden.
机译:简单的模式最小问题(SPMP)表示数据和关联规则挖掘的逻辑分析中的核心问题,并且它在几个字段中找到了应用于逻辑合成,可靠性分析和自动推理。它包括确定解释数据集的所有观察的最小模式,即布尔逻辑公式对于所有未经看法的数据集的所有元素都是如此。我们将此问题称为涵盖SPMP(C-SPMP),因为每个观察都可以通过多种模式解释(覆盖)。从真正的工业应用程序开始,我们还定义了一个问题的新版本,我们将其称为分区SPMP(P-SPMP),因为每次观察都必须覆盖一次。考虑到命题公式或真相表,C-SPMP和P-SPMP分别与确定最小分离和最小独家除虫正常形式的问题完全一致。众所周知,这两个问题都是NP - 硬,并且通常通过启发式方法解决。在这种情况下,这项工作的贡献是双重的。在一侧,它为SPMP的两个变体提供了两个原始整数线性编程配方。这些配方利用了布尔HyperCube的概念来构建问题的图形表示,并允许通过使用MIP求解器来完全解决超过1,000个观察的实例。另一方面,提出了两个有效和快速的启发式,以解决从文献(SeattLesnps)和工业数据库中取出的相关规模实例。所提出的方法不会遭受文献中存在的方法的相同尺寸缺点,并且优于现有的商业和免费逻辑工具或可用的工业解决方案,或者在产生的模式的数量和/或计算负担中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号