首页> 外文期刊>INFORMS journal on computing >Using Decomposition Techniques and Constraint Programming for Solving the Two-Dimensional Bin-Packing Problem
【24h】

Using Decomposition Techniques and Constraint Programming for Solving the Two-Dimensional Bin-Packing Problem

机译:使用分解技术和约束程序设计解决二维装箱问题

获取原文
获取原文并翻译 | 示例

摘要

The two-dimensional bin-packing problem is the problem of orthogonally packing a given set of rectangles into a minimum number of two-dimensional rectangular bins. The problem is NT-hard and very difficult to solve in practice as no good mixed integer programming (MIP) formulation has been found for the packing problem. We propose an algorithm based on the well-known Dantzig-Wolfe decomposition where the master problem deals with the production constraints on the rectangles while the subproblem deals with the packing of rectangles into a single bin. The latter problem is solved as a constraint-satisfaction problem (CSP), which makes it possible to formulate a number of additional constraints that may be difficult to formulate as MIP models. This includes guillotine-cutting requirements, relative positions, fixed positions and irregular bins. The CSP approach uses forward propagation to prune inferior arrangements of rectangles. Unsuccessful attempts to pack rectangles into a bin are brought back to the master model as valid inequalities. Hence, CSP is used not only to solve the pricing problem but also to generate valid inequalities in a branch-and-cut system. Using delayed column-generation, we obtain lower bounds of very good quality in reasonable time. In all instances considered, we obtain similar or better bounds than previously published. Several instances with up to n = 100 rectangles are solved to optimality through the developed branch-and-price-and-cut algorithm.
机译:二维装箱问题是将一组给定的矩形正交装箱到最小数量的二维矩形装箱中的问题。该问题是NT难题,在实践中很难解决,因为没有发现用于打包问题的好的混合整数编程(MIP)公式。我们提出了一种基于著名的Dantzig-Wolfe分解的算法,其中主问题处理矩形的生产约束,而子问题处理矩形的装箱。后一个问题作为约束满足问题(CSP)得以解决,这使得有可能制定许多可能难以表达为MIP模型的附加约束。这包括切纸的要求,相对位置,固定位置和不规则的纸箱。 CSP方法使用正向传播来修剪矩形的劣等排列。将矩形包装到箱中的失败尝试作为有效不等式返回到主模型。因此,CSP不仅用于解决定价问题,而且还用于在分支剪切系统中产生有效的不平等。使用延迟的色谱柱生成,我们可以在合理的时间内获得质量非常好的下限。在所有考虑的情况下,我们都获得了比以前公布的相似或更好的界限。通过开发的分支和价格和切割算法,可以解决n个最多100个矩形的几个实例的最优性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号