首页> 外文期刊>INFORMS journal on computing >Large-Order Multiple Recursive Generators with Modulus 2~(31) -1
【24h】

Large-Order Multiple Recursive Generators with Modulus 2~(31) -1

机译:模数为2〜(31)-1的大阶多重递归发生器

获取原文
获取原文并翻译 | 示例

摘要

The performance of a maximum-period multiple recursive generator (MRG) depends on the choices of the recurrence order k, the prime modulus p, and the multipliers used. For a maximum-period MRG, a large-order k not only means a large period length (i.e., p~k - 1) but, more importantly, also guarantees the equidistri-bution property in high dimensions (i.e., up to k dimensions), a desirable feature for a good random-number generator. As to generating efficiency, in addition to the multipliers, some special choices of the prime modulus p can significantly speed up the generation of pseudo-random numbers by replacing the expensive modulo operation with efficient logical operations. To construct efficient maximum-period MRGs of a large order, we consider the prime modulus p = 2~(31) - 1 and, via extensive computer search, find two large values of k, 7,499 and 20,897, for which p~k - 1 can be completely factorized. The successful search is achieved with the help of some results in number theory as well as some modern factorization methods. A general class of MRGs is introduced, which includes several existing classes of efficient generators. With the factorization results, we are able to identify via computer search within this class many portable and efficient maximum-period MRGs of order 7,499 or 20,897 with prime modulus 2~(31) - 1 and multipliers of powers-of-two decomposition. These MRGs all pass the stringent TestU01 test suite empirically.
机译:最大周期多重递归生成器(MRG)的性能取决于递归阶数k,素数模数p和所使用的乘数的选择。对于最大周期的MRG,大阶k不仅意味着较大的周期长度(即p〜k-1),而且更重要的是,它还保证了高维(即最大k维)的等分性。 ),这是优质随机数生成器的理想功能。关于生成效率,除了乘数之外,质数模p的一些特殊选择可以通过用高效的逻辑运算代替昂贵的模运算来显着加快伪随机数的生成。为了构造一个有效的大阶最大周期MRG,我们考虑素数模数p = 2〜(31)-1,并通过广泛的计算机搜索,找到k的两个大值k,7499和20897,其中p〜k- 1可以完全分解。借助于数论中的某些结果以及一些现代的因子分解方法,可以成功地进行搜索。引入了通用类别的MRG,其中包括几种现有的高效生成器类别。借助分解结果,我们可以通过计算机搜索来确定此类可移植且有效的最大周期MRG,它们的阶数为2〜(31)-1且乘以2的幂次分解为7499或20897阶。这些MRG均凭经验通过了严格的TestU01测试套件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号