首页> 外文期刊>INFORMS journal on computing >How to deal with liars? Designing intelligent rule-based expert systems to increase accuracy or reduce cost
【24h】

How to deal with liars? Designing intelligent rule-based expert systems to increase accuracy or reduce cost

机译:如何处理骗子?设计基于规则的智能专家系统以提高准确性或降低成本

获取原文
获取原文并翻译 | 示例

摘要

Input distortion is a common problem faced by expert systems, particularly those deployed with a Web interface. In this study, we develop novel methods to distinguish liars from truth-tellers, and redesign rule-based expert systems to address such a problem. The four proposed methods are termed split tree (ST), consolidated tree (CT), value-based split tree (VST), and value-based consolidated tree (VCT), respectively. Among them, ST and CT aim to increase an expert system's accuracy of recommendations, and VST and VCT attempt to reduce the misclassification cost resulting from incorrect recommendations. We observe that ST and VST are less efficient than CT and VCT in that ST and VST always require selected attribute values to be verified, whereas CT and VCT do not require value verification under certain input scenarios. We conduct experiments to compare the performances of the four proposed methods and two existing methods, i.e., the traditional true tree (TT) method that ignores input distortion and the knowledge modification (KM) method proposed in prior research. The results show that CT and ST consistently rank first and second, respectively, in maximizing the recommendation accuracy, and VCT and VST always lead to the lowest and second lowest misclassification cost. Therefore, CT and VCT should be the methods of choice in dealing with users' lying behaviors. Furthermore, we find that KM is outperformed by not only the four proposed methods, but sometimes even by the TT method. This result further confirms the advantage necessity of differentiating liars from truth-tellers when both types of users exist in the population.
机译:输入失真是专家系统(尤其是使用Web界面部署的专家系统)面临的常见问题。在这项研究中,我们开发了新颖的方法来区分说谎者和讲真话的人,并重新设计了基于规则的专家系统来解决这一问题。提出的四种方法分别称为拆分树(ST),合并树(CT),基于值的拆分树(VST)和基于值的合并树(VCT)。其中,ST和CT旨在提高专家系统建议的准确性,而VST和VCT则试图减少由于建议不正确而导致的误分类成本。我们观察到,ST和VST的效率低于CT和VCT,因为ST和VST始终要求对选定的属性值进行验证,而CT和VCT在某些输入情况下不需要进行值验证。我们进行实验以比较四种建议方法和两种现有方法(即忽略输入失真的传统真实树(TT)方法和先前研究中提出的知识修改(KM)方法)的性能。结果表明,CT和ST在最大程度地提高推荐准确性方面始终分别排在第一和第二,而VCT和VST总是导致最低和次最低的误分类成本。因此,CT和VCT应该成为处理用户说谎行为的选择方法。此外,我们发现KM不仅表现出四种建议的方法,而且有时甚至超过了TT方法。当人口中同时存在两种类型的用户时,这一结果进一步证实了区分说谎者和讲真话者的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号