...
首页> 外文期刊>INFORMS journal on computing >Planar Maximum Coverage Location Problem with Partial Coverage and Rectangular Demand and Service Zones
【24h】

Planar Maximum Coverage Location Problem with Partial Coverage and Rectangular Demand and Service Zones

机译:具有部分覆盖和矩形需求与服务区域的平面最大覆盖位置问题

获取原文
获取原文并翻译 | 示例
           

摘要

We study the planar maximum coverage location problem (MCLP) with rectilinear distance and rectangular demand zones in the case where "partial coverage" is allowed in its true sense, i.e., when covering part of a demand zone is allowed and the coverage accrued as a result of this is proportional to the demand of the covered part only. We pose the problem in a slightly more general form by allowing service zones to be rectangular instead of squares, thereby addressing applications in camera view-frame selection as well. More specifically, our problem, referred to as PMCLP-PCR (planar MCLP with partial coverage and rectangular demand and service zones), is to position a given number of rectangular service zones (SZs) on the two-dimensional plane to (partially) cover a set of existing (possibly overlapping) rectangular demand zones (DZs) such that the total covered demand is maximized. Previous studies on (planar) MCLP have assumed binary coverage, even when nonpoint objects such as lines or polygons have been used to represent demand. Under the binary coverage assumption, the problem can be readily formulated and solved as a binary linear program; whereas, partial coverage, although much more realistic, cannot be efficiently handled by binary linear programming, making PMCLP-PCR much more challenging to solve. In this paper, we first prove that PMCLP-PCR is NP-hard if the number of SZs is part of the input. We then present an improved algorithm for the single-SZ PMCLP-PCR, which is at least two times faster than the existing exact plateau vertex traversal algorithm. Next, we study multi-SZ PMCLP-PCR for the first time and prove theoretical properties that significantly reduce the search space for solving this problem, and we present a customized branch-and-bound exact algorithm to solve it. Our computational experiments show that this algorithm can solve relatively large instances of multi-SZ PMCLP-PCR in a short time. We also propose a fast polynomial time heuristic algorithm. Having optimal solutions from our exact algorithm, we benchmark the quality of solutions obtained from our heuristic algorithm. Our results show that for all the random instances solved to optimality by our exact algorithm, our heuristic algorithm finds a solution in a fraction of a second, where its objective value is at least 91% of the optimal objective in 90% of the instances (and at least 69% of the optimal objective in all the instances).
机译:在真正意义上允许“部分覆盖”的情况下(即,当允许覆盖部分需求区域并且覆盖范围累加为真时),我们研究具有直线距离和矩形需求区域的平面最大覆盖位置问题(MCLP)其结果仅与被覆盖零件的需求成比例。通过允许服务区域为矩形而不是正方形,我们以稍微更一般的形式提出了问题,从而也解决了相机视场选择中的应用问题。更具体地说,我们的问题(称为PMCLP-PCR(具有部分覆盖范围和矩形需求和服务区域的平面MCLP))是在二维平面上定位给定数量的矩形服务区域(SZ),以(部分)覆盖一组现有的(可能重叠的)矩形需求区域(DZ),以使总的覆盖需求最大化。以前对(平面)MCLP的研究都假定二进制覆盖,即使使用线或多边形等非点对象表示需求时也是如此。在二进制覆盖率假设下,该问题可以很容易地用二进制线性程序表述和解决。然而,部分覆盖范围虽然更现实,但不能通过二进制线性编程有效地处理,这使得PMCLP-PCR的解决难度更大。在本文中,我们首先证明,如果SZ的数目是输入的一部分,则PMCLP-PCR是NP困难的。然后,我们提出了一种用于单SZ PMCLP-PCR的改进算法,该算法至少比现有的精确高原顶点遍历算法快两倍。接下来,我们首次研究了多SZ PMCLP-PCR,并证明了可显着减少解决该问题的搜索空间的理论特性,并提出了一种定制的分支定界精确算法来解决该问题。我们的计算实验表明,该算法可以在短时间内解决相对较大的多SZ PMCLP-PCR实例。我们还提出了一种快速多项式时间启发式算法。通过精确算法获得最佳解,我们对从启发式算法获得的解的质量进行基准测试。我们的结果表明,对于所有通过精确算法求解到最优的随机实例,我们的启发式算法都能在不到一秒的时间内找到解决方案,其中其目标值至少是90%实例中最优目标的91%(并在所有情况下至少达到最佳目标的69%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号