首页> 外文期刊>Information systems frontiers >User Personality and User Satisfaction with Recommender Systems
【24h】

User Personality and User Satisfaction with Recommender Systems

机译:用户个性和用户对推荐系统的满意度

获取原文
获取原文并翻译 | 示例

摘要

In this study, we show that individual users' preferences for the level of diversity, popularity, and serendipity in recommendation lists cannot be inferred from their ratings alone. We demonstrate that we can extract strong signals about individual preferences for recommendation diversity, popularity and serendipity by measuring their personality traits. We conducted an online experiment with over 1,800 users for six months on a live recommendation system. In this experiment, we asked users to evaluate a list of movie recommendations with different levels of diversity, popularity, and serendipity. Then, we assessed users' personality traits using the Ten-item Personality Inventory (TIPI). We found that ratings-based recommender systems may often fail to deliver preferred levels of diversity, popularity, and serendipity for their users (e.g. users with high-serendipity preferences). We also found that users with different personalities have different preferences for these three recommendation properties. Our work suggests that we can improve user satisfaction when we integrate users' personality traits into the process of generating recommendations.
机译:在这项研究中,我们表明,不能仅从他们的评分中推断出个人用户对推荐列表中的多样性,受欢迎程度和偶然性的偏爱。我们证明,通过测量个人的性格特征,我们可以提取有关个人偏好的强烈信号,如推荐多样性,受欢迎程度和偶然性。我们在实时推荐系统上针对1,800多名用户进行了为期六个月的在线实验。在此实验中,我们要求用户评估一系列具有不同多样性,知名度和偶然性的电影推荐。然后,我们使用十项人格量表(TIPI)评估了用户的人格特征。我们发现,基于评分的推荐系统可能经常无法为其用户(例如,具有高意外偏好的用户)提供首选的多样性,受欢迎程度和偶然性级别。我们还发现,具有不同个性的用户对这三个推荐属性有不同的偏好。我们的工作表明,将用户的个性特征整合到生成建议的过程中,可以提高用户满意度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号