首页> 外文期刊>Information Processing & Management >Large-scale spectral clustering based on pairwise constraints
【24h】

Large-scale spectral clustering based on pairwise constraints

机译:基于成对约束的大规模频谱聚类

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present an efficient spectral clustering method for large-scale data sets, given a set of pairwise constraints. Our contribution is threefold: (a) clustering accuracy is increased by injecting prior knowledge of the data points' constraints to a small affinity submatrix; (b) connected components are identified automatically based on the data points' pairwise constraints, generating thus isolated "islands" of points; furthermore, local neighborhoods of points of the same connected component are adapted dynamically, and constraints propagation is performed so as to further increase the clustering accuracy; finally (c) the complexity is preserved low, by following a sparse coding strategy of a landmark spectral clustering. In our experiments with three benchmark shape, face and handwritten digit image data sets, we show that the proposed method outperforms competitive spectral clustering methods that either follow semi-supervised or scalable strategies.
机译:在本文中,我们给出了成对约束条件下针对大型数据集的有效频谱聚类方法。我们的贡献是三方面的:(a)通过将数据点约束的先验知识注入小的亲和力子矩阵来提高聚类的准确性; (b)根据数据点的成对约束自动识别连接的组件,从而生成孤立的点“岛”;此外,对同一连接组件的点的局部邻域进行动态自适应,并进行约束传播,以进一步提高聚类精度。最后,(c)通过遵循地标频谱聚类的稀疏编码策略,将复杂度保持在较低水平。在我们使用三种基准形状,面部和手写数字图像数据集进行的实验中,我们证明了所提出的方法优于采用半监督或可扩展策略的竞争频谱聚类方法。

著录项

  • 来源
    《Information Processing & Management》 |2015年第5期|616-624|共9页
  • 作者单位

    Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, 6th km Charilaou - Thermi, 57001, P.O. Box 60361, Greece,Electrical and Computer Engineering Department, Aristotle University of Thessaloniki, Thessaloniki, Greece;

    Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, 6th km Charilaou - Thermi, 57001, P.O. Box 60361, Greece;

    Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, 6th km Charilaou - Thermi, 57001, P.O. Box 60361, Greece,Electrical and Computer Engineering Department, Aristotle University of Thessaloniki, Thessaloniki, Greece;

    Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, 6th km Charilaou - Thermi, 57001, P.O. Box 60361, Greece;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Spectral clustering; Semi-supervised; Sparse coding;

    机译:光谱聚类;半监督;稀疏编码;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号