首页> 外文期刊>Information Processing & Management >Discovering web services in social web service repositories using deep variational autoencoders
【24h】

Discovering web services in social web service repositories using deep variational autoencoders

机译:使用Deep变形AutoEncoders在社交Web服务存储库中发现Web服务

获取原文
获取原文并翻译 | 示例

摘要

Web Service registries have progressively evolved to social networks-like software repositories. Users cooperate to produce an ever-growing, rich source of Web APIs upon which new value-added Web applications can be built. Such users often interact in order to follow, comment on, consume and compose services published by other users. In this context, Web Service discovery is a core functionality of modern registries as needed Web Services must be discovered before being consumed or composed. Many efforts to provide effective keyword-based service discovery mechanisms are based on Information Retrieval techniques as services are described using structured or unstructured textdocuments that specify the provided functionality. However, traditional techniques suffer from term-mismatch, which means that only the terms that are contained in both user queries and descriptions are exploited to perform service retrieval. Early feature learning techniques such as LSA or LDA tried to solve this problem by finding hidden or latent features in text documents. Recently, alternative feature learning based techniques such as Word Embeddings achieved state of the art results for Web Service discovery. In this paper, we propose to learn features from service descriptions by using Variational Autoencoders, a special kind of autoencoder which restricts the encoded representation to model latent variables. Autoencoders in turn are deep neural networks used for unsupervised learning of efficient codings. We train our autoencoder using a real 17 113-service dataset extracted from the ProgrammableWeb.com API social repository. We measure discovery efficacy by using both Recall and Precision metrics, achieving significant gains compared to both Word Embeddings and classic latent features modelling techniques. Also, performance-oriented experiments show that the proposed approach can be readily exploited in practice.
机译:Web服务注册机构逐步发展到社交网络的软件存储库。用户合作以产生不断增长的Web API源,可以构建新的增值Web应用程序。这些用户经常互动,以便遵循,注释,消耗和撰写其他用户发布的服务。在此上下文中,Web服务发现是根据需要在消耗或组成之前发现所需的Web服务的现代注册表的核心功能。许多努力提供有效的基于关键字的服务发现机制是基于信息检索技术,因为使用指定提供的功能的结构化或非结构化文本文本描述来描述服务。然而,传统技术遭受术语不匹配,这意味着只有在用户查询和描述中包含的术语仅被利用以执行服务检索。早期特征学习技术,如LSA或LDA试图通过在文本文档中查找隐藏或潜在功能来解决此问题。最近,基于替代特征的基于学习的技术,例如Word Embeddings的Word Embeddings实现了Web服务发现的最新结果。在本文中,我们建议通过使用变变AualEncoders,这是一种特殊类型的AutoEncoder来学习来自服务描述的功能,这将编码表示为模型潜变量。自动化器反过来是用于无监督的高效编码学习的深度神经网络。我们使用从ProgrammableWeb.com API社交存储库中提取的Real 17 113-Service数据集培训我们的AutoEncoder。通过使用召回和精密度量来测量发现功效,与Word Embeddings和经典潜在的功能建模技术相比,实现了显着的增益。此外,以性能为导向的实验表明,在实践中可以容易地利用所提出的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号