首页> 外文期刊>Information Processing & Management >Computing semantic similarity based on novel models of semantic representation using Wikipedia
【24h】

Computing semantic similarity based on novel models of semantic representation using Wikipedia

机译:使用Wikipedia基于新颖的语义表示模型计算语义相似度

获取原文
获取原文并翻译 | 示例

摘要

Computing Semantic Similarity (SS) between concepts is one of the most critical issues in many domains such as Natural Language Processing and Artificial Intelligence. Over the years, several SS measurement methods have been proposed by exploiting different knowledge resources. Wikipedia provides a large domain-independent encyclopedic repository and a semantic network for computing SS between concepts. Traditional feature-based measures rely on linear combinations of different properties with two main limitations, the insufficient information and the loss of semantic information. In this paper, we propose several hybrid SS measurement approaches by using the Information Content (IC) and features of concepts, which avoid the limitations introduced above. Considering integrating discrete properties into one component, we present two models of semantic representation, called CORM and CARM. Then, we compute SS based on these models and take the IC of categories as a supplement of SS measurement. The evaluation, based on several widely used benchmarks and a benchmark developed by ourselves, sustains the intuitions with respect to human judgments. In summary, our approaches are more efficient in determining SS between concepts and have a better human correlation than previous methods such as Word2Vec and NASARI.
机译:计算概念之间的语义相似度(SS)是许多领域(如自然语言处理和人工智能)中最关键的问题之一。多年来,通过利用不同的知识资源,提出了几种SS测量方法。 Wikipedia提供了一个大型的,独立于域的百科全书存储库和一个语义网络,用于计算概念之间的SS。传统的基于特征的度量依赖于不同属性的线性组合,并具有两个主要限制,即信息不足和语义信息丢失。在本文中,我们利用信息内容(IC)和概念特征提出了几种混合SS测量方法,这些方法避免了上面介绍的限制。考虑到将离散属性集成到一个组件中,我们提出了两种语义表示模型,分别称为CORM和CARM。然后,我们根据这些模型计算SS,并将类别IC作为SS测量的补充。该评估基于几个广泛使用的基准和我们自己制定的基准,维持了有关人类判断的直觉。总而言之,与Word2Vec和NASARI等以前的方法相比,我们的方法在确定概念之间的SS时更有效,并且具有更好的人工相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号