首页> 外文期刊>Information and computation >Constraint Satisfaction Problems over semilattice block Mal'tsev algebras
【24h】

Constraint Satisfaction Problems over semilattice block Mal'tsev algebras

机译:半格块Mal'tsev代数上的约束满足问题

获取原文
获取原文并翻译 | 示例

摘要

The Dichotomy Conjecture for the Constraint Satisfaction Problem (CSP) was recently settled, independently by Zhuk and the author. The proofs of this conjecture are rather sophisticated and require deep understanding of the algebraic structure of CSPs. This paper is a precursor of the author's proof of the Dichotomy Conjecture, and represents its main ideas in a simpler and clearer form in a more restricted class of the CSP.There are two well-known types of algorithms for solving CSPs: local propagation and generating a basis of the solution space. For several years the focus of the CSP research has been on 'hybrid' algorithms that somehow combine the two approaches. In this paper we present a new method of such hybridization that allows us to solve certain CSPs that has been out of reach for a quite a while, and eventually leads to resolving the Dichotomy Conjecture.We apply this method to CSPs parametrized by a universal algebra, an approach that has been very popular in the last decade or so. Specifically, we consider a fairly restricted class of algebras we will call semilattice block Mal'tsev. An algebra A is semilattice block Mal'tsev if it has a binary operation f, a ternary operation m, and a congruence sigma such that the quotient A/(sigma) with operation f is a semilattice, f is a projection on every block of sigma, and every block of sigma is a Mal'tsev algebra with Mal'tsev operation m. This means that the domain in such a CSP is partitioned into blocks such that if the problem is considered on the quotient set A/(sigma), it can be solved by a simple constraint propagation algorithm. On the other hand, if the problem is restricted on individual sigma-blocks, it can be solved by generating a basis of the solution space. We show that the two methods can be combined in a highly nontrivial way, and therefore the constraint satisfaction problem over a semilattice block Mal'tsev algebra is solvable in polynomial time. (C) 2019 Elsevier Inc. All rights reserved.
机译:Zhuk和作者独立解决了约束满足问题(CSP)的二分法猜想。该猜想的证明相当复杂,需要深入了解CSP的代数结构。本文是作者证明二分法猜想的先驱,并在更严格的CSP类中以更简单,更清晰的形式表示了其主要思想。解决CSP的算法有两种众所周知的类型:局部传播算法和局部传播算法。生成解决方案空间的基础。几年来,CSP研究的重点一直放在以某种方式将两种方法结合在一起的“混合”算法。在本文中,我们提出了这种杂交的新方法,该方法使我们能够解决已经存在很长时间的某些CSP,并最终解决二分法猜想。我们将此方法应用于由通用代数参数化的CSP ,这种方法在过去的十年左右非常流行。具体来说,我们考虑一类相当有限的代数,我们称其为半格块Mal'tsev。如果代数A具有二元运算f,三元运算m和同余sigma,使得具有运算f的商A /(sigma)是半晶格,则f是半格,则f是在每个格上的投影sigma,每个sigma块都是Mal'tsev代数m。这意味着将这种CSP中的域划分为多个块,这样,如果在商集A /σ上考虑问题,则可以通过简单的约束传播算法来解决。另一方面,如果问题仅限于单个sigma块,则可以通过生成解空间的基础来解决。我们证明了这两种方法可以以高度平凡的方式进行组合,因此半格块Mal'tsev代数上的约束满足问题可以在多项式时间内求解。 (C)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号