首页> 外文期刊>Information and computation >Equivalences between learning of data and probability distributions, and their applications
【24h】

Equivalences between learning of data and probability distributions, and their applications

机译:数据学习与概率分布及其应用之间的等价关系

获取原文
获取原文并翻译 | 示例

摘要

Algorithmic learning theory traditionally studies the learnability of effective infinite binary sequences (reals), while recent work by Vitanyi and Chater has adapted this framework to the study of learnability of effective probability distributions from random data. We prove that for certain families of probability measures that are parametrized by reals, learnability of a subclass of probability measures is equivalent to learnability of the class of the corresponding real parameters. This equivalence allows to transfer results from classical algorithmic theory to learning theory of probability measures. We present a number of such applications, providing many new results regarding EX and BC learnability of classes of measures, thus drawing parallels between the two learning theories. (C) 2018 Published by Elsevier Inc.
机译:传统上,算法学习理论研究有效无限二进制序列(实数)的可学习性,而Vitanyi和Chater的最新工作已经将该框架改编为研究随机数据中有效概率分布的可学习性。我们证明,对于某些由实数参数化的概率测度系列,概率测度子类的可学习性等同于相应实参类的可学习性。这种等效性允许将结果从经典算法理论转移到学习概率测度理论。我们介绍了许多这样的应用程序,它们提供了关于EX和BC类度量方法的可学习性的许多新结果,从而在两种学习理论之间得出了相似之处。 (C)2018由Elsevier Inc.发布

著录项

  • 来源
    《Information and computation》 |2018年第1期|123-140|共18页
  • 作者单位

    Chinese Acad Sci Inst Software State Key Lab Comp Sci Beijing Peoples R China;

    Heidelberg Univ Inst Informat Heidelberg Germany;

    Natl Univ Singapore Dept Math Singapore Singapore|Natl Univ Singapore Sch Comp Singapore Singapore;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号