首页> 外文期刊>Information and computation >On decidability of monadic logic of order over the naturals extended by monadic predicates
【24h】

On decidability of monadic logic of order over the naturals extended by monadic predicates

机译:关于单子谓词所扩展的自然的单子阶逻辑的可判定性

获取原文
获取原文并翻译 | 示例

摘要

A fundamental result of Buechi states that the set of monadic second-order formulas true in the structure (Nat, < ) is decidable. A natural question is: what monadic predicates (sets) can be added to (Nat, < ) while preserving decidability? Elgot and Rabin found many interesting predicates P for which the monadic theory of < Nat, <, P > is decidable. The Elgot and Rabin automata theoretical method has been generalized and sharpened over the years and their results were extended to a variety of unary predicates. We give a sufficient and necessary model-theoretical condition for the decidability of the monadic theory of (Nat, <, P_1,..., P_n). We reformulate this condition in an algebraic framework and show that a sufficient condition proposed previously by O. Carton and W. Thomas is actually necessary. A crucial argument in the proof is that monadic second-order logic has the selection and the uniformization properties over the extensions of (Nat, < ) by monadic predicates. We provide a self-contained proof of this result.
机译:Buechi的基本结果表明,在结构(Nat,<)中正确的一元二阶公式集是可以确定的。一个自然的问题是:在保留可判定性的同时,可以将哪些Monadic谓词(集合)添加到(Nat,<)中?埃尔戈特(Elgot)和拉宾(Rabin)发现了许多有趣的谓词P,对于这些谓词P,的单峰理论是可以确定的。多年来,Elgot和Rabin自动机理论方法得到了推广和完善,其结果扩展到了各种一元谓词。我们为(Nat,<,P_1,...,P_n)一元理论的可判定性提供了充分必要的模型理论条件。我们在代数框架中重新表述了该条件,并表明O. Carton和W. Thomas先前提出的充分条件实际上是必要的。证明中的一个关键论点是,单子二阶逻辑对单子谓词(Nat,<)的扩展具有选择和统一性。我们提供此结果的独立证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号