首页> 外文期刊>Information and computation >Deciding safety properties in infinite-state pi-calculus via behavioural types
【24h】

Deciding safety properties in infinite-state pi-calculus via behavioural types

机译:通过行为类型确定无限状态pi演算中的安全性

获取原文
获取原文并翻译 | 示例

摘要

In the pi-calculus, we consider the decidability of model checking properties expressed in Shallow Logic, a simple spatial logic. We first introduce a behavioural type system that, given a pi-process P that might in general be infinite-control, tries to extract a spatial-behavioural type T, in the form of a ccs term that is logically equivalent to P. Employing techniques based on well-structured transition systems (wsts), we prove that model checking (T |= φ) is decidable for types, for a fragment of the logic that can be used to encode interesting safety and reachability properties. The wsts technique we rely upon requires first endowing the considered transition system with a well-quasi order, then defining a finite basis for the denotation of each formula. This is achieved by viewing types as forests, with a well-quasi order that corresponds to a form of forest embedding. As a consequence of the logical equivalence between types and processes, we obtain the decidability of the considered fragment of the logic for well-typed pi-processes. We discuss (un)decidability and complexity of model checking also outside the considered decidable fragment of Shallow Logic.
机译:在pi演算中,我们考虑以浅逻辑(一种简单的空间逻辑)表示的模型检查属性的可确定性。我们首先介绍一种行为类型系统,该行为类型系统在给定通常可能是无限控制的pi过程P的情况下,尝试以ccs术语的形式提取空间行为类型T(在逻辑上等效于P)。基于结构良好的转换系统(wsts),我们证明了模型检查(T | =φ)对于类型是可确定的,因为可以使用一部分逻辑来编码有趣的安全性和可达性。我们所依赖的wsts技术要求首先以良好的阶数赋予考虑的过渡系统,然后为每个公式的定义定义一个有限的基础。这可以通过将类型视为森林来实现,其顺序与森林嵌入的形式相对应。由于类型和进程之间的逻辑等效性,我们获得了类型明确的pi进程所考虑的逻辑片段的可判定性。我们还在浅逻辑的可判定片段之外讨论模型检查的(不可判定)性和复杂性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号