首页> 外文期刊>Information and computation >Resource-bounded martingales and computable Dowd-type generic sets
【24h】

Resource-bounded martingales and computable Dowd-type generic sets

机译:资源有限的mar和可计算的Dodd型通用集

获取原文
获取原文并翻译 | 示例

摘要

Martin-Loef defined algorithmic randomness, the use of martingales in this definition and several variants were explored by Schnorr, and Lutz introduced resource-bounded randomness. Ambos-Spies et al. have studied resource-bounded randomness under time-bounds and have shown that resource-bounded randomness implies resource-bounded genericity. While the genericity of Ambos-Spies is based on time-bound on finite-extension strategy, the genericity of Dowd, the main topic of this paper, is based on an analogy of the forcing theorem. For a positive integer r, an oracle D is r-generic in the sense of Dowd (r-Dowd) if the following holds: If a certain formula F on an exponential-sized portion of D is a tautology then a polynomial-sized subfunction of D forces F to be a tautology. Here, r is the number of occurrences of query symbols in F. The relationship between resource-bounded randomness and Dowd-type genericity has been not clear so far. We show that there exists a primitive recursive function r(n) with the following property: Every t(n)-random set is r-Dowd for each positive integer r. A proof is done by means of constructing resource-bounded martingales. In our former paper, we left an open problem whether there exists a primitive recursive set which is r-Dowd for every positive integer r. In our recent work, we give an affirmative answer to the problem. The main theorem of the present paper gives an alternative proof of the affirmative answer.
机译:马丁·洛夫(Martin-Loef)定义了算法随机性,在此定义中使用了of子,Schnorr探索了几种变体,卢兹(Lutz)引入了资源有限的随机性。 Ambos-Spies等。研究了时间限制下的资源受限的随机性,并表明资源受限的随机性意味着资源受限的通用性。虽然Ambos-Spies的通用性是基于有限扩展策略的时限,但本文的主要主题Dowd的通用性却是基于强迫定理的类比。对于正整数r,如果满足以下条件,则在Dowd(r-Dowd)的意义上,oracle D是r泛型的:如果D的指数大小部分上的某个公式F是重言式,则是多项式大小的子函数D迫使F成为重言式。在此,r是F中查询符号的出现次数。迄今为止,资源有限的随机性与Dowd类型通用性之间的关系尚不清楚。我们显示存在一个具有以下属性的原始递归函数r(n):对于每个正整数r,每个t(n)-随机集都是r-Dowd。通过构造资源受限的mar来进行证明。在我们以前的论文中,我们留下了一个开放的问题,即是否存在对于每个正整数r都具有r-Dowd的原始递归集。在我们最近的工作中,我们对这个问题给出了肯定的答案。本文的主要定理给出了肯定答案的另一种证明。

著录项

  • 来源
    《Information and computation》 |2015年第6期|227-248|共22页
  • 作者

    Masahiro Kumabe; Toshio Suzuki;

  • 作者单位

    Faculty of Liberal Arts, The Open University of Japan, Wakaba 2-11, Mihama-ku, Chiba-city, 261-8586, Japan;

    Department of Mathematics and Information Sciences, Tokyo Metropolitan University, Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Dowd-type generic set; Resource-bounded randomness; Martingale;

    机译:Dowd型通用集;资源有限的随机性;鞅;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号