...
首页> 外文期刊>Industrial Informatics, IEEE Transactions on >Design and Real-Time Controller Implementation for a Battery-Ultracapacitor Hybrid Energy Storage System
【24h】

Design and Real-Time Controller Implementation for a Battery-Ultracapacitor Hybrid Energy Storage System

机译:电池-超级电容器混合储能系统的设计和实时控制器实现

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this study, two real-time energy management strategies have been investigated for optimal current split between batteries and ultracapacitors (UCs) in electric vehicle applications. In the first strategy, an optimization problem is formulated and solved using Karush–Kuhn–Tucker conditions to obtain the real-time operation points of current split for the hybrid energy storage system (HESS). In the second strategy, a neural network-based strategy is implemented as an intelligent controller for the proposed system. To evaluate the performance of these two real-time strategies, a performance metric based on the battery state-of-health (SoH) is developed to reveal the relative impact of instantaneous battery currents on the battery degradation. A 38 V–385 Wh battery and a 32 V–4.12 Wh UC HESS hardware prototype has been developed and a real-time experimental platform has been built for energy management controller validation, using xPC Target and National Instrument data acquisition system. Both the simulation and real-time experiment results have successfully validated the real-time implementation feasibility and effectiveness of the two real-time controller designs. It is shown that under a high speed, high acceleration, aggressive drive cycle US06, the two real-time energy management strategies can greatly reduce the battery peak current and consequently decreases the battery SoH reduction by 31% and 38% in comparison to a battery-only energy storage system.
机译:在这项研究中,研究了两种实时能量管理策略,以在电动汽车应用中优化电池和超级电容器(UC)之间的电流分配。在第一种策略中,使用Karush–Kuhn–Tucker条件公式化并解决了优化问题,以获得混合动力储能系统(HESS)的电流分割实时操作点。在第二种策略中,基于神经网络的策略被实现为所提出系统的智能控制器。为了评估这两种实时策略的性能,开发了基于电池健康状态(SoH)的性能指标,以揭示瞬时电池电流对电池退化的相对影响。已经开发了38 V–385 Wh电池和32 V–4.12 Wh UC HESS硬件原型,并使用xPC Target和National Instruments数据采集系统构建了用于能量管理控制器验证的实时实验平台。仿真和实时实验结果均成功验证了两种实时控制器设计的实时实现可行性和有效性。结果表明,在高速,高加速度,激进的驾驶循环US06下,这两种实时能量管理策略可以大大降低电池峰值电流,因此与电池相比,将SoH降低了31%和38%储能系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号