首页> 外文期刊>Industrial Informatics, IEEE Transactions on >Bearing Defect Classification Based on Individual Wavelet Local Fisher Discriminant Analysis with Particle Swarm Optimization
【24h】

Bearing Defect Classification Based on Individual Wavelet Local Fisher Discriminant Analysis with Particle Swarm Optimization

机译:基于粒子群优化的个体小波局部Fisher判别分析的轴承缺陷分类

获取原文
获取原文并翻译 | 示例

摘要

In order to enhance the performance of bearing defect classification, feature extraction and dimensionality reduction have become important. In order to extract the effective features, wavelet kernel local fisher discriminant analysis (WKLFDA) is first proposed; herein, a new wavelet kernel function is proposed to construct the kernel function of LFDA. In order to automatically select the parameters of WKLFDA, a particle swarm optimization (PSO) algorithm is employed, yielding a new PSO-WKLFDA. When compared with the other state-of-the-art methods, the proposed PSO-WKLFDA yields better performance. However, the use of a single global transformation of PSO-WKLFDA for the multiclass task does not provide excellent classification accuracy due to the fact that the projected data still significantly overlap with each other in the projected subspace. In order to enhance the performance of bearing defect classification, a novel method is then proposed by transforming the multiclass task into all possible binary classification tasks using a one-against-one (OAO) strategy. Then, individual PSO-WKLFDA (I-PSO-WKLFDA) is used for extracting effective features of each binary class. The extracted effective features of each binary class are input to a support vector machine (SVM) classifier. Finally, a decision fusion mechanism is employed to merge the classification results from each SVM classifier to identify the bearing condition. Simulation results using synthetic data and experimental results using different bearing fault types show that the proposed method is well suited and effective for bearing defect classification.
机译:为了提高轴承缺陷分类的性能,特征提取和降维变得重要。为了提取有效特征,首先提出了小波核局部渔民判别分析(WKLFDA)。本文提出了一种新的小波核函数来构造LFDA的核函数。为了自动选择WKLFDA的参数,采用了粒子群优化(PSO)算法,从而产生了新的PSO-WKLFDA。与其他最新方法相比,建议的PSO-WKLFDA具有更好的性能。但是,由于投影数据在投影子空间中仍然彼此明显重叠,因此对多类任务使用PSO-WKLFDA的单个全局转换不会提供出色的分类准确性。为了提高轴承缺陷分类的性能,然后提出了一种新方法,即使用一对一(OAO)策略将多类任务转换为所有可能的二进制分类任务。然后,使用单个PSO-WKLFDA(I-PSO-WKLFDA)提取每个二进制类别的有效特征。每个二进制类别的提取的有效特征被输入到支持向量机(SVM)分类器。最后,采用决策融合机制合并来自每个SVM分类器的分类结果,以识别轴承状况。使用合成数据进行的仿真结果以及使用不同轴承故障类型的实验结果表明,该方法非常适合且有效地用于轴承缺陷分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号