首页> 外文期刊>Industrial Informatics, IEEE Transactions on >Symmetric and Nonnegative Latent Factor Models for Undirected, High-Dimensional, and Sparse Networks in Industrial Applications
【24h】

Symmetric and Nonnegative Latent Factor Models for Undirected, High-Dimensional, and Sparse Networks in Industrial Applications

机译:工业应用中无向,高维和稀疏网络的对称和非负潜在因子模型

获取原文
获取原文并翻译 | 示例

摘要

Undirected, high-dimensional, and sparse (HiDS) networks are frequently encountered in industrial applications. They contain rich knowledge regarding various useful patterns. Nonnegative latent factor (NLF) models are effective and efficient in extracting useful knowledge from directed networks. However, they cannot describe the symmetry of an undirected network. For addressing this issue, this paper analyzes the extraction process of NLFs on asymmetric and symmetric matrices, respectively, thereby innovatively achieving the symmetric and nonnegative latent factor (SNLF) models for undirected, HiDS networks. The proposed SNLF models are equipped with: 1) high efficiency; 2) nonnegativity; and 3) symmetry. Experimental results on real networks show that the SNLF models are able to: 1) describe the symmetry of the target network rigorously; 2) ensure the nonnegativity of resultant latent factors; and 3) achieve high computational efficiency when addressing data analysis tasks like missing data estimation.
机译:无定向,高维和稀疏(HiDS)网络在工业应用中经常遇到。它们包含有关各种有用模式的丰富知识。非负潜在因子(NLF)模型在从有向网络中提取有用的知识方面非常有效。但是,它们无法描述无向网络的对称性。为了解决这个问题,本文分别分析了非对称和对称矩阵上NLF的提取过程,从而创新性地实现了针对无向HiDS网络的对称和非负潜因子(SNLF)模型。所提出的SNLF模型配备有:1)效率高; 2)非负性; 3)对称。在真实网络上的实验结果表明,SNLF模型能够:1)严格描述目标网络的对称性; 2)确保合成潜在因子的非负性;和3)在解决数据分析任务(如缺失数据估计)时实现了很高的计算效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号