首页> 外文期刊>IEEE transactions on industrial informatics >Semisupervised JITL Framework for Nonlinear Industrial Soft Sensing Based on Locally Semisupervised Weighted PCR
【24h】

Semisupervised JITL Framework for Nonlinear Industrial Soft Sensing Based on Locally Semisupervised Weighted PCR

机译:基于局部半监督加权PCR的非线性工业软传感半监督JITL框架

获取原文
获取原文并翻译 | 示例

摘要

Just-in-time learning (JITL) is a commonly used technique for industrial soft sensing of nonlinear processes. However, traditional JITL approaches mainly focus on equal sample sizes between process (input) variables and quality (output) variables, which may not be practical in industrial processes since quality variables are usually much harder to obtain than other process variables. In order to handle unequal length dataset with only a few labeled data, a novel semisupervised JITL framework is proposed for soft sensor modeling for nonlinear processes, which is based on semisupervised weighted probabilistic principal component regression (SWPPCR). In the new semisupervised JITL framework, traditional Mahalanobis distance and a new proposed scaled Mahalanobis distance are used for similarity measurement and weight assignment. By selecting the most relevant labeled and unlabeled samples and assigning them with the corresponding weights, a local SWPPCR can be built to estimate the output variables of the query sample. Case studies are carried out to evaluate the prediction performance of the proposed semisupervised JITL framework on a numerical example and an industrial process. The effectiveness and flexibility of the proposed method are demonstrated by the prediction results.
机译:即时学习(JITL)是用于非线性过程的工业软传感的一种常用技术。但是,传统的JITL方法主要关注过程(输入)变量和质量(输出)变量之间相等的样本大小,这在工业过程中可能不切实际,因为质量变量通常比其他过程变量更难获得。为了处理仅带有少量标记数据的长度不等长的数据集,基于半监督加权概率主成分回归(SWPPCR),提出了一种新颖的半监督JITL框架,用于非线性过程的软传感器建模。在新的半监督JITL框架中,传统的Mahalanobis距离和新提议的缩放的Mahalanobis距离用于相似性测量和权重分配。通过选择最相关的标记和未标记样本并为它们分配相应的权重,可以构建本地SWPPCR来估计查询样本的输出变量。案例研究通过数值实例和工业过程评估了所提出的半监督JITL框架的预测性能。预测结果证明了该方法的有效性和灵活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号