首页> 外文期刊>IEEE transactions on industrial informatics >Structured Latent Label Consistent Dictionary Learning for Salient Machine Faults Representation-Based Robust Classification
【24h】

Structured Latent Label Consistent Dictionary Learning for Salient Machine Faults Representation-Based Robust Classification

机译:基于显着机器故障表示的鲁棒分类的结构化潜在标签一致字典学习

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates the salient machine faults representation-based classification issue by dictionary learning. A novel structured latent label consistent dictionary learning (LLC-DL) model is proposed for joint discriminative salient representation and classification. Our LLC-DL deals with the tasks by solving one objective function that aims to minimize the structured reconstruction error, structured discriminative sparse-code error and classification error simultaneously. Also, LLC-DL decomposes given signals into a sparse reconstruction part over structured latent weighted discriminative dictionary, a salient feature extraction part and an error part fitting noise. Specifically, the dictionary is learnt atom by atom, where each dictionary atom is learnt with a latent vector that reduces the disturbance between interclass atoms. The structured coding coefficients are calculated via minimizing the reconstruction error and discriminative sparse code error simultaneously. The salient representations are learnt by embedding signals onto a projection and a robust linear classifier is then trained over the learned salient features directly so that features can be ensured to be optimal for classification, where robust l2,1-norm imposed on the classifier can make the prediction results more accurate. By including a salient feature extraction term, the classification approach of LLC-DL is very efficient, since there is no need to involve an extra time-consuming sparse reconstruction process with the well-trained dictionary for each test signal. Extensive simulations versify the effectiveness of our algorithm.
机译:本文通过字典学习研究了基于显着机器故障表示的分类问题。提出了一种新颖的结构化潜在标签一致字典学习(LLC-DL)模型,用于联合判别显着表示和分类。我们的LLC-DL通过解决一个目标函数来处理这些任务,该目标函数旨在同时最小化结构化重构错误,结构化区分稀疏代码错误和分类错误。同样,LLC-DL将给定信号分解为结构化的潜在加权判别字典上的稀疏重建部分,显着特征提取部分和拟合噪声的误差部分。具体来说,字典是逐个原子学习的,其中每个字典原子都是通过潜在矢量来学习的,该矢量可以减少类间原子之间的干扰。通过同时最小化重构误差和区分稀疏码误差来计算结构化编码系数。通过将信号嵌入到投影上来学习显着表示,然后在学习到的显着特征上直接训练鲁棒的线性分类器,从而可以确保对分类而言最优的特征,其中强加给分类器的鲁棒的l2,1-范数可以使预测结果更准确。通过包括一个显着的特征提取项,LLC-DL的分类方法非常有效,因为不需要为每个测试信号使用训练有素的字典来进行耗时的稀疏重构过程。大量的仿真证明了我们算法的有效性。

著录项

  • 来源
    《IEEE transactions on industrial informatics》 |2017年第2期|644-656|共13页
  • 作者单位

    School of Computer Science and Technology & Joint International Research Laboratory of Machine Learning and Neuromorphic Computing, Soochow University, Suzhou, China;

    School of Computer Science and Technology & Joint International Research Laboratory of Machine Learning and Neuromorphic Computing, Soochow University, Suzhou, China;

    School of Computer Science and Technology & Joint International Research Laboratory of Machine Learning and Neuromorphic Computing, Soochow University, Suzhou, China;

    Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong;

    School of Economics, Wuhan University of Technology, Wuhan, China;

    School of Computer Science and Technology & Joint International Research Laboratory of Machine Learning and Neuromorphic Computing, Soochow University, Suzhou, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Dictionaries; Feature extraction; Robustness; Linear programming; Encoding; Informatics; Classification algorithms;

    机译:词典;特征提取;稳健性;线性编程;编码;信息学;分类算法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号