首页> 外文期刊>IEEE transactions on industrial informatics >Adaptive Nonconvex Sparsity Based Background Subtraction for Intelligent Video Surveillance
【24h】

Adaptive Nonconvex Sparsity Based Background Subtraction for Intelligent Video Surveillance

机译:基于自适应非透射稀疏性的智能视频监控的背景减法

获取原文
获取原文并翻译 | 示例

摘要

Intelligent video surveillance is a vital technique in smart city construction, where detection of surveillance objects is generally achieved by subtracting estimated background from the raw video. Common wisdom of background estimation focuses on introducing meaningful structure or discriminative hypothesis to sparsity-based objectives. However, relaxation optimization, which is always considered a most effective solution, definitely leads to information loss. So, in this article, as to preserve more information, a new nonconvex sparsity model that can be solved directly by explicit solution is proposed for the stationary component of video. The solution, called generalized shrinkage thresholding operator, is designed by integrating the advantages of three common shrinkage operators. Then, for the regularly changing patterns, a purified dictionary learning operation is designed to find self-repeating texture patches. Eventually, foreground objects are detected by combining background subtraction with a spatiotemporal continuity constraint. Besides, built on optimizations of both models, we then show the way to refine the joint estimates using alternative optimization of all the subproblems. Experimental results have shown that, as to foreground detection task, when compared against current state-of-the-art techniques, the proposed model achieves comparable and often superior performance in terms of F-measure scores in most cases.
机译:智能视频监控是智能城市建设中的重要技术,其中通过从原始视频中减去估计的背景,通常实现监视对象的检测。背景估计的共同智慧侧重于向稀疏的目标引入有意义的结构或歧视性假设。然而,放宽优化总是被认为是最有效的解决方案,绝对导致信息丢失。因此,在本文中,为了保留更多信息,提出了一种新的非透露稀疏模型,可以通过显式解决方案直接解决。通过整合三个常见的收缩算子的优点,设计了称为广义收缩阈值阈值操作员的解决方案。然后,对于定期改变模式,纯化的字典学习操作旨在找到自我重复的纹理补丁。最终,通过将背景减法与时空连续性约束组合来检测前景对象。此外,在两种模型的优化内建立,我们将展示使用所有子问题的替代优化优化联合估计的方法。实验结果表明,关于前景检测任务,当与当前的最先进技术相比,所提出的模型在大多数情况下,在F测量分数方面实现了可比性且往往优越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号