首页> 外文期刊>IEEE transactions on industrial informatics >An Adaptive Trust Boundary Protection for IIoT Networks Using Deep-Learning Feature-Extraction-Based Semisupervised Model
【24h】

An Adaptive Trust Boundary Protection for IIoT Networks Using Deep-Learning Feature-Extraction-Based Semisupervised Model

机译:基于深度学习功能提取的半化模型的IIT网络自适应信任边界保护

获取原文
获取原文并翻译 | 示例

摘要

The rapid development of Internet of Things (IoT) platforms provides the industrial domain with many critical solutions, such as joint venture virtual production systems. However, the extensive interconnection of industrial systems with corporate systems in industrial Internet of Things (IIoT) networks exposes the industrial domain to severe cyber risks. Because of many proprietary multilevel protocols, limited upgrade opportunities, heterogeneous communication infrastructures, and a very large trust boundary, conventional IT security fails to prevent cyberattacks against IIoT networks. Recent secure protocols, such as secure distributed network protocol (DNP 3.0), are limited to weak hash functions for critical response time requirements. As a complementary, we propose an adaptive trust boundary protection for IIoT networks using a deep-learning, feature-extraction-based semisupervised model. Our proposed approach is novel in that it is compatible with multilevel protocols of IIoT. The proposed approach does not require any manual effort to update the attack databases and can learn the rapidly changing natures of unknown attack models using unsupervised learnings and unlabeled data from the wild. Therefore, the proposed approach is resilient to emerging cyberattacks and their dynamic nature. The proposed approach has been verified using a real IIoT testbed. Extensive experimental analysis of the attack models and results shows that the proposed approach significantly improves the identification of attacks over conventional security control techniques.
机译:事物互联网的快速发展(IOT)平台为工业领域提供了许多关键解决方案,如合资虚拟生产系统。然而,在工业互联网上与企业系统的广泛互连(IIOT)网络将工业领域暴露于严重的网络风险。由于许多专有的多级协议,有限的升级机会,异构通信基础设施和非常大的信任边界,传统的IT安全性无法防止对IIT网络的网络攻击。最近的安全协议,例如安全分布式网络协议(DNP 3.0),仅限于弱散列函数,以便关键响应时间要求。作为互补性,我们使用深度学习的特征提取的半体验模型提出了一种自适应信任边界保护。我们所提出的方法是新颖的,因为它与IIOT的多级方案兼容。所提出的方法不需要任何手动努力更新攻击数据库,并可以使用野外的无监督学习和未标记的数据来学习未知攻击模型的快速变化的性质。因此,所提出的方法是对新兴网络角质及其动态性质的弹性。拟议的方法已经使用真正的IIOT测试验证了。对攻击模型的广泛实验分析表明,该方法显着提高了传统安全控制技术对攻击的识别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号