首页> 外文期刊>IEEE transactions on industrial informatics >A Deep Swarm-Optimized Model for Leveraging Industrial Data Analytics in Cognitive Manufacturing
【24h】

A Deep Swarm-Optimized Model for Leveraging Industrial Data Analytics in Cognitive Manufacturing

机译:用于利用工业数据分析在认知制造中的深度群优化模型

获取原文
获取原文并翻译 | 示例

摘要

To compete in the current data-driven economy, it is essential that industrial manufacturers leverage real-time tangible information assets and embrace big data technologies. Data classification is one of the most proverbial analytical techniques within the cognitively capable manufacturing industries for finding the patterns in the structured and unstructured data at the plant, enterprise, and industry levels. This article presents a cognition-driven analytics model, CNN-WSADT, for the real-time data classification using three soft computing techniques, namely, deep learning [convolution neural network (CNN)], machine learning [decision tree (DT)], and swarm intelligence [wolf search algorithm (WSA)]. The proposed deep swarm-optimized classifier is a feature-boosted DT, which learns features using a deep convolution net and an optimal feature set built using a metaheuristic WSA. The performance of CNN-WSADT is studied on two benchmark datasets and the experimental results depict that the proposed cognition model outperforms the other considered algorithms in terms of the classification accuracy.
机译:为了在目前的数据驱动的经济中竞争,工业制造商必须利用实时有形信息资产和拥抱大数据技术。数据分类是认知能力的制造行业中最众所周知的分析技术之一,用于在工厂,企业和行业水平的结构化和非结构化数据中寻找模式。本文提出了一种认知驱动的分析模型,CNN-WSADT,用于使用三种软计算技术的实时数据分类,即深入学习[卷积神经网络(CNN)],机器学习[决策树(DT)],和群体智能[狼搜索算法(WSA)]。所提出的深度群优化的分类器是一个特征升级的DT,它使用深度卷积网络和使用Metaheuristic WSA构建的最佳功能集来学习功能。研究了CNN-WSADT的性能,并在两个基准数据集中研究了实验结果,描绘了所提出的认知模型在分类准确性方面优于其他考虑的算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号