首页> 外文期刊>IEEE transactions on industrial informatics >Edge-Cloud Computing for Internet of Things Data Analytics: Embedding Intelligence in the Edge With Deep Learning
【24h】

Edge-Cloud Computing for Internet of Things Data Analytics: Embedding Intelligence in the Edge With Deep Learning

机译:用于物联网的边缘云计算数据分析:深入学习的边缘嵌入智能

获取原文
获取原文并翻译 | 示例

摘要

Rapid growth in numbers of connected devices including sensors, mobile, wearable, and other Internet of Things (IoT) devices, is creating an explosion of data that are moving across the network. To carry out machine learning (ML), IoT data are typically transferred to the cloud or another centralized system for storage and processing; however, this causes latencies and increases network traffic. Edge computing has the potential to remedy those issues by moving computation closer to the network edge and data sources. On the other hand, edge computing is limited in terms of computational power, and thus, is not well-suited for ML tasks. Consequently, this article aims to combine edge and cloud computing for IoT data analytics by taking advantage of edge nodes to reduce data transfer. In order to process data close to the source, sensors are grouped according to locations, and feature learning is performed on the close by edge node. For comparison reasons, similarity-based processing is also considered. Feature learning is carried out with deep learning-the encoder part of the trained autoencoder is placed on the edge and the decoder part is placed on the cloud. The evaluation was performed on the task of human activity recognition from sensor data. The results show that when sliding windows are used in the preparation step, data can be reduced on the edge up to 80% without significant loss in accuracy.
机译:连接设备数量的快速增长包括传感器,移动,可穿戴和其他物联网(IOT)设备,正在创建跨网络移动的数据爆炸。为了执行机器学习(ML),IOT数据通常被转移到云或其他集中系统以进行存储和处理;但是,这会导致延迟并增加网络流量。边缘计算有可能通过将计算更靠近网络边缘和数据源来解决这些问题。另一方面,边缘计算在计算能力方面受到限制,因此,不适合ML任务。因此,本文通过利用边缘节点来减少数据传输来组合Edge和Cloud计算IoT数据分析。为了处理靠近源的数据,传感器根据位置分组,并且在边缘节点关闭上执行特征学习。出于比较原因,还考虑了基于相似性的处理。特征学习是通过深度学习进行的 - 培训的AutoEncoder的编码器部分放置在边缘上,解码器部分放置在云上。对来自传感器数据的人类活动识别的任务进行了评估。结果表明,在准备步骤中使用滑动窗口时,可以在高达80%的边缘上减少数据,无需精度显着损耗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号