首页> 外文期刊>IEEE transactions on industrial informatics >Short-Term Forecasting of Heat Demand of Buildings for Efficient and Optimal Energy Management Based on Integrated Machine Learning Models
【24h】

Short-Term Forecasting of Heat Demand of Buildings for Efficient and Optimal Energy Management Based on Integrated Machine Learning Models

机译:基于集成机器学习模型的高效和最佳能源管理的建筑物热需求短期预测

获取原文
获取原文并翻译 | 示例

摘要

The increasing growth in the energy demand calls for robust actions to design and optimize energy-related assets for efficient and economic energy supply and demand within a smart grid setup. This article proposes a novel integrated machine learning (ML) technique to forecast the heat demand of buildings in a district heating system. The proposed short-term (24h-ahead) heat demand forecasting model is based on the integration of empirical mode decomposition (EMD), imperialistic competitive algorithm (ICA), and support vector machine (SVM). The proposed model also embeds an ML-based feature selection (FS) technique combining binary genetic algorithm and Gaussian process regression to obtain the most important and nonredundant variables that can constitute the input predictor subset to the forecasting model. The model is developed using a two-year (2015-2016) hourly dataset of actual district heat demand obtained from various buildings in the Otaniemi area of Espoo, Finland. Several variables from different domains such as seasonality (calendar), weather, occupancy, and heat demand are used to construct the initial feature space for FS process. Short-term forecasting models are also implemented using the Persistence approach as a reference and other eight ML approaches: artificial neural network (ANN), genetic algorithm combined with ANN (GA-ANN), ICA-ANN, SVM, GA-SVM, ICA-SVM, EMD-GA-ANN, and EMD-ICA-ANN. The performance of the proposed EMD-ICA-SVM-based forecasting model is tested using an out-of-sample one-year (2017) hourly dataset of district heat consumption of various building types. Comparative analysis of the forecasting performance of the models was performed. The obtained results demonstrate that the devised model forecasts the heat demand with improved performance evaluated using various accuracy metrics. Moreover, the devised model achieves outperformed forecasting accuracy enhancement, compared to the other nine evaluated models.
机译:能源需求的增长越来越高,为设计和优化能源相关资产的强劲行动,以实现智能电网设置内的有效和经济能源供应和需求。本文提出了一种新型集成机器学习(ML)技术,用于预测地区供热系统中建筑物的热需求。提出的短期(24h-Fexiew)热需求预测模型基于经验模式分解(EMD),帝国主义竞争算法(ICA)的集成,支持向量机(SVM)。所提出的模型还嵌入了基于ML的特征选择(FS)技术,组合二进制遗传算法和高斯进程回归,以获得可以构成预测模型的输入预测器子集的最重要和最重要的变量。该模型是使用两年(2015-2016)小时的实际区域热需求的每小时数据集,从芬兰埃斯波埃斯诺省奥沙涅米地区的各种建筑物获得。来自不同域的几个变量,如季节性(日历),天气,占用和热需求,用于构建FS过程的初始特征空间。还使用持久性方法作为参考和其他8毫升方法来实施短期预测模型:人工神经网络(ANN),遗传算法与ANN(GA-ANN),ICA-ANN,SVM,GA-SVM,ICA相结合-SVM,EMD-GA-ANN和EMD-ICA-ANN。使用各种建筑类型的各个建筑类型的房屋热量消耗的样本一年(2017)小时数据集测试了所提出的基于EMD-ICA-SVM的预测模型的性能。对模型的预测性能进行比较分析。所获得的结果表明,设计的模型预测了使用各种精度度量评估的改进性能的热需求。此外,与其他九种评估模型相比,设计的模型实现了优于预测精度增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号