首页> 外文期刊>IEEE transactions on industrial informatics >Prediction Performance Improvement via Anomaly Detection and Correction of Actual Production Data in Iron Ore Sintering Process
【24h】

Prediction Performance Improvement via Anomaly Detection and Correction of Actual Production Data in Iron Ore Sintering Process

机译:通过异常检测和铁矿石烧结过程实际生产数据的预测性能改进

获取原文
获取原文并翻译 | 示例

摘要

The accuracy and integrity of the actual production data influence the reliability and stability of sintering process in steel industry. However, the actual production data may encounter various outliers due to noise, sensor failure, and operator negligence existing in this process. To tackle this issue, this article develops an original framework for the detection and correction of abnormal production data in the sintering process. First, an improved kernel-based Fuzzy C-Means algorithm is developed to effectively divide normal production data under multiple operating conditions. Then, different one-class support vector machine (SVM) classifiers are constructed for different operating conditions. According to which operating condition the actual production data belongs to, the one-class SVM under this operating condition is called to accurately detect abnormal production data. Finally, the most similar normal historical data in the operating condition is obtained to correct the abnormal data by using k nearest neighbor algorithm based on the Mahalanobis distance. Simulation results involving actual production data illustrate the effectiveness of the proposed method. By taking two existing models of the sintering process as examples, their prediction performance becomes improved after detecting and correcting the abnormal production data, so that the proposed framework has important engineering application impact.
机译:实际生产数据的准确性和完整性影响了钢铁工业烧结过程的可靠性和稳定性。但是,由于在此过程中存在的噪声,传感器故障和操作员疏忽,实际生产数据可能会遇到各种异常值。为了解决这个问题,本文开发了一个原始框架,用于检测和校正烧结过程中的异常生产数据。首先,开发了一种改进的基于内核的模糊C型算法,以在多个操作条件下有效地分割正常生产数据。然后,为不同的操作条件构建不同的单级支持向量机(SVM)分类器。根据实际生产数据所属的操作条件,调用此操作条件下的单级SVM以准确检测异常生产数据。最后,获得了操作条件中最相似的正常历史数据,通过使用基于Mahalanobis距离的K最近邻算法来校正异常数据。仿真结果涉及实际生产数据说明了该方法的有效性。通过将烧结过程的现有模型作为示例,在检测和校正异常生产数据后,它们的预测性能变化,因此提出的框架具有重要的工程应用影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号