首页> 外文期刊>IEEE transactions on industrial informatics >Deep Reinforcement Learning Based Online Network Selection in CRNs With Multiple Primary Networks
【24h】

Deep Reinforcement Learning Based Online Network Selection in CRNs With Multiple Primary Networks

机译:基于深度加强学习的在线网络在CRN中选择了多个主要网络

获取原文
获取原文并翻译 | 示例

摘要

Network selection is one of the important techniques in cognitive radio networks (CRNs). With the development of network convergence technology and the popularity of heterogeneous networks, multiple primary CRNs interacting with multiple authorized networks are becoming possible, which can provide secondary users with more spectrum resources by network selection. Network selection is the key to spectrum sharing between CRNs and multiple primary networks. However, the spectrum sensing results, highly complex system state, and unsystematic research framework make the research of network selection very challenging. Traditional network selection algorithms are offline selection methods that are based on prior knowledge of primary networks. However, in the complex network environment, it is impossible to get prior knowledge from multiple primary networks, because the offline network selection methods lack efficiency. In order to meet these challenges, this article aims at improving the quality of service of cognitive users, and based on reinforcement learning method and the achievements of dynamic spectrum access of cognitive radio in single primary network environment, proposed a deep reinforcement learning based online network selection method of CRNs with multiple primary networks.
机译:网络选择是认知无线电网络(CRN)中的重要技术之一。随着网络融合技术的发展和异构网络的普及,多个与多个授权网络交互的初级CRN正在成为可能,这可以通过网络选择提供具有更多频谱资源的辅助用户。网络选择是CRN和多个主网络之间的频谱共享的关键。然而,频谱传感结果,高度复杂的系统状态和不系统的研究框架使网络选择的研究非常具有挑战性。传统的网络选择算法是基于主网络的先前知识的离线选择方法。但是,在复杂的网络环境中,不可能从多个主要网络获取先验知识,因为离线网络选择方法缺乏效率。为了满足这些挑战,本文旨在提高认知用户服务质量,并基于单一主要网络环境中的认知无线电的强化学习方法和动态频谱访问的成就,提出了基于深度加强学习的在线网络多个主要网络CRN的选择方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号