首页> 外文期刊>IEEE transactions on industrial informatics >A New CO/CO_2 Prediction Model Based on Labeled and Unlabeled Process Data for Sintering Process
【24h】

A New CO/CO_2 Prediction Model Based on Labeled and Unlabeled Process Data for Sintering Process

机译:一种新的CO / CO_2预测模型,基于标记和未标记的烧结过程数据

获取原文
获取原文并翻译 | 示例

摘要

To reduce energy consumption and harmful emission, it is of great significance to improve carbon efficiency in sintering process, which is able to be achieved if the carbon efficiency can be accurately predicted. In this article, the ratio of CO and CO2 (CO/CO2) is taken as a measurement of the carbon efficiency. As CO/CO2 is hard to measure, and there exist multiple working conditions, multiple variables, and nonlinearity, a hybrid CO/CO2 prediction model is devised based on the aforementioned characteristics. First, the sintering process is analyzed, and the key characteristics to predict the CO/CO2 are extracted. Next, the configuration of the prediction model is given based on the analysis. The model consists by two submodels, one is to predict the state variables by an improved just-in-time learning model, combining three neural network (NN) models. The other is to predict CO/CO2 with semisupervised algorithm, based on deep belief network with a combination of the three NN regression methods. Then, the configurations of the two submodels are introduced in detail. The test results based on actual running data exhibit the good performance of the model.
机译:为了降低能量消耗和有害排放,提高烧结过程中的碳效率具有重要意义,这是能够准确预测碳效率的碳效率。在本文中,CO和CO 2(CO / CO2)的比例被视为碳效率的测量。由于CO / CO2难以测量,并且存在多个工作条件,多个变量和非线性,基于上述特性设计了一种混合CO / CO2预测模型。首先,分析烧结过程,提取预测CO / CO2的关键特性。接下来,基于分析给出预测模型的配置。该模型由两个子模型组成,一个是通过改进的即时学习模型来预测状态变量,组合三个神经网络(NN)模型。另一种是通过三个NN回归方法的组合,基于深度信仰网络来预测具有半质经算法的CO / CO2。然后,详细介绍了两个子模型的配置。基于实际运行数据的测试结果表现出模型的良好性能。

著录项

  • 来源
    《IEEE transactions on industrial informatics》 |2021年第1期|333-345|共13页
  • 作者单位

    China Univ Geosci Sch Automat Wuhan 430074 Peoples R China|Hubei Key Lab Adv Control & Intelligent Automat C Wuhan 430074 Peoples R China|Waseda Univ Grad Sch Environm & Energy Engn Tokyo 1698555 Japan;

    China Univ Geosci Sch Automat Wuhan 430074 Peoples R China|Hubei Key Lab Adv Control & Intelligent Automat C Wuhan 430074 Peoples R China;

    China Univ Geosci Sch Automat Wuhan 430074 Peoples R China|Hubei Key Lab Adv Control & Intelligent Automat C Wuhan 430074 Peoples R China;

    China Univ Geosci Sch Automat Wuhan 430074 Peoples R China|Hubei Key Lab Adv Control & Intelligent Automat C Wuhan 430074 Peoples R China|Univ Alberta Dept Elect & Comp Engn Edmonton AB T6R 2V4 Canada;

    China Univ Geosci Sch Automat Wuhan 430074 Peoples R China|Hubei Key Lab Adv Control & Intelligent Automat C Wuhan 430074 Peoples R China|Univ Alberta Dept Elect & Comp Engn Edmonton AB T6R 2V4 Canada;

    Waseda Univ Grad Sch Environm & Energy Engn Tokyo 1698555 Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    CO/CO2; deep belief network (DBN); improved just-in-time learning (JITL); neural network (NN); sintering process;

    机译:CO / CO2;深度信仰网络(DBN);改善了立即学习(JITL);神经网络(NN);烧结过程;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号