首页> 外文期刊>IEEE transactions on industrial informatics >Big Data Oriented Smart Tool Condition Monitoring System
【24h】

Big Data Oriented Smart Tool Condition Monitoring System

机译:大数据面向智能工具条件监控系统

获取原文
获取原文并翻译 | 示例

摘要

The computer numerical control (CNC) machining is the technical foundation of modern high-end manufacturing. To satisfy the productivity and precision requirement, it is required to monitor and adaptively control the machining process in real time under varying working conditions. The current CNC machining system is limited by the data acquisition methods and modeling approaches, and it is difficult to make full use of monitoring information to smartly assess and optimize the cutting conditions online. This article proposes a new idea and a novel model to solve the problem, with a big data analytics framework for smart tool condition monitoring (TCM). Driven by the monitored big data, this article systematically investigates the key issues for TCM, such as machining dynamics, intelligent tool wear monitoring and compensation algorithms, heterogeneous big data fusion, and deep learning methods. Under this scheme, it develops the smart TCM system that could improve the CNC machining precision and productivity significantly.
机译:计算机数控(CNC)加工是现代高端制造的技术基础。为了满足生产率和精确要求,需要在不同的工作条件下实时监测和自适应地控制加工过程。目前的CNC加工系统受到数据采集方法和建模方法的限制,并且难以充分利用监控信息以巧妙地评估和优化在线的切割条件。本文提出了一个新的想法和一种新颖的模式来解决问题,具有智能工具条件监控(TCM)的大数据分析框架。该文章通过受监控的大数据驱动,系统地调查了TCM的关键问题,例如加工动态,智能工具磨损监测和补偿算法,异构大数据融合和深度学习方法。在此方案下,它开发了智能TCM系统,可以显着提高CNC加工精度和生产率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号