首页> 外文期刊>IEEE transactions on industrial informatics >Making Knowledge Tradable in Edge-AI Enabled IoT: A Consortium Blockchain-Based Efficient and Incentive Approach
【24h】

Making Knowledge Tradable in Edge-AI Enabled IoT: A Consortium Blockchain-Based Efficient and Incentive Approach

机译:在Edge-AI中制作知识可在IOT中提供:基于集成区块的基于集成区的高效和激励方法

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, benefit from more powerful edge computing devices and edge artificial intelligence (edge-AI) could be introduced into Internet of Things (IoT) to find the knowledge derived from massive sensory data, such as cyber results or models of classification, and detection and prediction from physical environments. Heterogeneous edge-AI devices in IoT will generate isolated and distributed knowledge slices, thus knowledge collaboration and exchange are required to complete complex tasks in IoT intelligent applications with numerous selfish nodes. Therefore, knowledge trading is needed for paid sharing in edge-AI enabled IoT. Most existing works only focus on knowledge generation rather than trading in IoT. To address this issue, in this paper, we propose a peer-to-peer (P2P) knowledge market to make knowledge tradable in edge-AI enabled IoT. We first propose an implementation architecture of the knowledge market. Moreover, we develop a knowledge consortium blockchain for secure and efficient knowledge management and trading for the market, which includes a new cryptographic currency knowledge coin, smart contracts, and a new consensus mechanism proof of trading. Besides, a noncooperative game based knowledge pricing strategy with incentives for the market is also proposed. The security analysis and performance simulation show the security and efficiency of our knowledge market and incentive effects of knowledge pricing strategy. To the best of our knowledge, it is the first time to propose an efficient and incentive P2P knowledge market in edge-AI enabled IoT.
机译:如今,可以从更强大的边缘计算设备和边缘人工智能(EDGE-AI)中获益,可以将其互联网(IOT)介绍,以查找来自大规模感官数据的知识,例如网络结果或分类模型,以及检测和检测和检测从物理环境预测。 IOT中的异构边缘AI设备将生成隔离和分布的知识切片,因此需要知识协作和交换,以便在具有众多自私节点中完成IOT智能应用程序中的复杂任务。因此,Edge-AI中的付费共享需要知识交易。最现有的作品仅关注知识一代而不是IOT交易。为了解决这个问题,在本文中,我们提出了一个对等(P2P)知识市场,以使Edge-AI启用的IOT中的知识。我们首先提出了知识市场的实施架构。此外,我们开发了一个知识联盟区块链,以实现市场的安全和高效的知识管理和交易,包括新的加密货币知识硬币,智能合同和交易的新共识机制。此外,还提出了一种基于非支持的基于游戏的知识定价策略,具有市场的激励措施。安全分析和性能模拟显示了我们知识市场的安全性和效率和知识定价策略的激励效果。据我们所知,这是第一次在Edge-AI中提出高效和激励的P2P知识市场。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号