首页> 外文期刊>IEEE transactions on industrial informatics >Robust Neural Network Fault Estimation Approach for Nonlinear Dynamic Systems With Applications to Wind Turbine Systems
【24h】

Robust Neural Network Fault Estimation Approach for Nonlinear Dynamic Systems With Applications to Wind Turbine Systems

机译:用于风力发电机系统的非线性动态系统的强大神经网络故障估计方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a robust fault estimation approach is proposed for multi-input and multioutput nonlinear dynamic systems on the basis of back propagation neural networks. The augmented system approach, input-to-state stability theory, linear matrix inequality optimization, and neural network training/learning are integrated so that a robust simultaneous estimate of system states and actuator faults are achieved. The proposed approaches are finally applied to a 4.8 MW wind turbine benchmark system, and the effectiveness is well demonstrated.
机译:在本文中,提出了一种基于反向传播神经网络的多输入和多开展非线性动态系统的鲁棒故障估计方法。增强系统方法,输入到状态稳定性理论,线性矩阵不等式优化和神经网络训练/学习,以实现系统状态和执行器故障的强大同时估计。拟议的方法最终应用于4.8兆瓦风力涡轮机基准系统,效果很好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号