首页> 外文期刊>IEEE transactions on industrial informatics >Series AC Arc Fault Detection Method Based on Hybrid Time and Frequency Analysis and Fully Connected Neural Network
【24h】

Series AC Arc Fault Detection Method Based on Hybrid Time and Frequency Analysis and Fully Connected Neural Network

机译:基于混合时间和频率分析和完全连接神经网络的系列交流电弧故障检测方法

获取原文
获取原文并翻译 | 示例

摘要

The variety of arc fault induced by different load types makes residential series arc fault detection complicated and challengeable. This paper proposes a hybrid time and frequency analysis and fully connected neural network (HTFNN) based method to identify series ac arc fault. The HTFNN method recognizes samples state by broadly classifying them into resistive (Re) category, capacitive-inductive (CI) category, and switching (Sw) category according to the fundamental frequency components of series current. In each category, separate fully connected neural network (NN) with customized time and frequency indicators being the input is employed for fine class recognition and state identification. This method construction addresses the feature overlap among various cases by separate categories and enables suitable indicator selection within each category. Since the identification complexity in each category is cheaper than identifying all cases together, concise NNs are applied in this paper to reduce computing cost. The general accuracies of normal and arcing state identification in Re, CI, and Sw category are 99.64, 100, and 98.45, respectively, based on 3950 test samples. Method comparison shows that HTFNN achieves higher detection precision at lower computational complexity for generalized load types. This paper also evaluates the feasibility of implementing the method in hardware for arc fault detection device application.
机译:由不同负载类型引起的各种电弧故障使得住宅系列电弧故障检测复杂和挑战。本文提出了一种混合时间和频率分析和基于完全连接的神经网络(HTFNN)方法来识别序列交流弧故障。通过将它们广泛分类为电阻(RE)类别,电容电感(CI)类别和切换(SW)类别,根据串联电流的基频分量,HTFNN方法识别样本状态。在每个类别中,采用具有定制时间和频率指示器的单独的完全连接的神经网络(NN)用于精细类识别和状态识别。该方法构造通过单独的类别解决各种情况之间的功能重叠,并在每个类别中启用适当的指示灯选择。由于每个类别中的识别复杂性比将所有情况识别在一起,因此在本文中应用简洁的NN以降低计算成本。基于3950个测试样品,RE,CI和SW类别在RE,CI和SW类别中正常和电弧识别状态鉴定的一般精度分别为99.64,100和98.45。方法比较表明,HTFNN以较低的概括负载类型的计算复杂度达到更高的检测精度。本文还评估了在用于电弧故障检测设备应用中实现硬件中的方法的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号