首页> 外文期刊>IEEE transactions on industrial informatics >Spatiotemporal Anomaly Detection Using Deep Learning for Real-Time Video Surveillance
【24h】

Spatiotemporal Anomaly Detection Using Deep Learning for Real-Time Video Surveillance

机译:利用深度学习实时视频监控的时尚异常检测

获取原文
获取原文并翻译 | 示例

摘要

Rapid developments in urbanization and autonomous industrial environments have augmented and expedited the need for intelligent real-time video surveillance. Recent developments in artificial intelligence for anomaly detection in video surveillance only address some of the challenges, largely overlooking the evolving nature of anomalous behaviors over time. Tightly coupled dependence on a known normality training dataset and sparse evaluation based on reconstruction error are further limitations. In this article, we propose the incremental spatiotemporal learner (ISTL) to address challenges and limitations of anomaly detection and localization for real-time video surveillance. ISTL is an unsupervised deep-learning approach that utilizes active learning with fuzzy aggregation, to continuously update and distinguish between new anomalies and normality that evolve over time. ISTL is demonstrated and evaluated on accuracy, robustness, computational overhead as well as contextual indicators, using three benchmark datasets. Results of these experiments validate our contribution and confirm its suitability for real-time video surveillance.
机译:城市化和自主工业环境的快速发展增强,并加快了对智能实时视频监控的需求。在视频监控中对异常检测的人工智能的最新发展只会解决一些挑战,在很大程度上忽视了异常行为的不断发展性质。对基于重建误差的已知正常训练数据集和稀疏评估紧密耦合依赖性进一步限制。在本文中,我们提出了增量的时空学习者(ISTL),解决了对实时视频监控的异常检测和定位的挑战和局限性。 ISTL是一种无监督的深度学习方法,利用主动学习与模糊汇总,以持续更新并区分新的异常和常态随着时间的推移而发展。使用三个基准数据集进行说明和评估准确性,稳健性,计算开销以及上下文指标。这些实验的结果验证了我们的贡献,并确认其适用性进行实时视频监控。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号