首页> 外文期刊>Image and Vision Computing >Cancelable Iris template generation by aggregating patch level ordinal relations with its holistically extended performance and security analysis
【24h】

Cancelable Iris template generation by aggregating patch level ordinal relations with its holistically extended performance and security analysis

机译:通过整体扩展性能和安全分析将补码阶数关系聚集补丁级序数关系来取消的虹膜模板

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, biometric-based authentication is gaining immense popularity due to the widespread usage of digital activities. Among various biometric traits, the iris is one of the most discriminative, accurate, and popularly used biometrics. However, due to its immutable nature, it is highly vulnerable to adversarial attacks if stolen and thus poses a severe security threat. Here, in this work, we propose a cancelable iris biometric authentication system that stores a transformed version of the original iris template and thus enables cancelation and re-enrolment in case if the original template is stolen. Firstly, for extracting discriminative iris features, we have proposed a novel deep architecture based on aggregation learning. This deep architecture makes use of qualitative measure (ordinal measure), unlike popularly used quantitative measures. The usage of ordinal measures in this work enables to encode distinctive iris features quite well. Later generated iris features are protected using state-of-theart two representative cancelable biometric techniques, namely BioHashing and 2(N) discretized BioPhasor. Finally, in order to justify the efficacy of the proposed architecture, we have presented rigorous and holistic security analysis. To the best of our knowledge, this is the first work that has presented such an in-depth analysis of any deep network in the context of cancelable iris biometrics. Experimental results over four datasets viz. CASIA-V3 Interval, CASIA-Lamp, IITD, and IITK demonstrate the efficacy of the proposed framework in terms of security and accuracy. Further, for better network explainability, we have also performed layer-specific heatmap and feature map analysis to ascertain what exactly our novel deep architecture is learning. (c) 2020 Elsevier B.V. All rights reserved.
机译:如今,基于生物识别的认证由于数字活动的广泛使用而受到巨大的普及。在各种生物识别性状中,虹膜是最辨别,准确和普遍使用的生物识别性之一。然而,由于其不可改变的性质,如果被盗并因此构成严重的安全威胁,它可能对对抗性攻击的攻击感到高度脆弱。在此处,在此工作中,我们提出了一个可消化的虹膜生物认证系统,其存储原始IRIS模板的变换版本,从而在原始模板被盗时启用取消和重新注册。首先,为了提取歧视性虹膜功能,我们提出了一种基于聚合学习的新型深度建筑。与普遍使用的定量措施不同,这种深度架构利用定性措施(序数)。在这项工作中的序数措施的使用使得能够对独特的虹膜功能相当好。后来生成的虹膜特征是使用两种代表性可消化的生物识别技术,即生物发射和2(N)离散化的生物保护剂的保护。最后,为了证明拟议的架构的功效,我们提出了严格和整体的安全分析。据我们所知,这是第一个在取消的虹膜生物识别学的背景下对任何深网络进行了这种深入分析的工作。四个数据集viz的实验结果。 Casia-V3间隔,Casia-Lamp,IITD和IITK展示了拟议框架在安全性和准确性方面的功效。此外,为了更好的网络解释性,我们还执行了层面的热爱图,并采用地图分析,以确定我们的新型深度建筑正在学习什么。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号