首页> 外文期刊>Image and Vision Computing >Fusion of iris and sclera using phase intensive rubbersheet mutual exclusion for periocular recognition
【24h】

Fusion of iris and sclera using phase intensive rubbersheet mutual exclusion for periocular recognition

机译:使用相密集的橡胶和巩膜融合使用相密集的橡胶曲线互斥进行围绕识别

获取原文
获取原文并翻译 | 示例

摘要

In biometrics, periocular recognition analysis is an essential constituent for identifying the human being. Among prevailing the modalities, ocular biometric traits such as iris, sclera and periocular eye movement have experienced noteworthy consciousness in the recent past. In this paper, we are presenting new multi-biometric fusion method called Phase Intensive Mutual Exclusive Distribution (PI-MED) method by combining periocular features (i.e. iris and sclera) for identity verification. The main objective of the proposed PI-MED method is to reduce the matching fusion time and overhead during human recognition in biometrics. Initially, iris modality and sclera modality is pre-processed using Phase Intensive Rubber Sheeting Local Pattern Extraction to generate the vector of score. After that, the extracted iris and sclera features are given to theMutual Exclusive Bayesian fusionmodel. The fusion model is applied at the score level for reducing fusion overhead. In this model, feature fusion is generated based on the log likelihood ratio by using covariance matrix measurement. Finally with fusion features, Distributed Hamming Distance Template Matching (DHDTM) algorithm is designed to evaluate the recognition rate of test data with available training data. The results show that the DHDTMsignificantly improves the recognition rate of human biometric sampleswhen compared to the conventional person identification methods. Several testswere conducted to evaluate the performance of the proposedmethods of standard biometric databases using three metrics, namely, matching fusion time, overhead and true positive rate. From the experimental results, the proposed PI-MEDmethod reduces thematching fusion time and overhead by 47% and 45% when compared to existingmethods. Similarly, the proposed PI-MED method increases the true positive rate by 33% when compared to existing methods. (c) 2020 Published by Elsevier B.V.
机译:在生物识别性中,周边识别分析是识别人类的重要组成部分。在普遍的方式中,紫外线,斯科拉和围眼的眼睛等眼部生物识别性状在最近的过去经历了值得注意的意识。在本文中,我们通过组合围眼特征(即虹膜和巩膜)来介绍新的多生物融合方法​​,称为相密集互斥分布(PI-MED)方法进行身份验证。所提出的PI-MED方法的主要目的是减少生物识别期间的匹配融合时间和开销。最初,使用相密集型橡胶薄膜局部图案提取来预处理虹膜模态和巩膜模态以产生分数的载体。之后,提取的虹膜和巩膜特征被给予对象独家贝叶斯融合模型。融合模型应用于分数水平,以减少融合架空。在该模型中,通过使用协方差矩阵测量,基于对数似然比生成特征融合。最后凭借融合功能,分布式汉明距离模板匹配(DHDTM)算法旨在评估具有可用培训数据的测试数据的识别率。结果表明,与传统人物识别方法相比,DHDTMSignight促进了人体生物识别样品的识别率。几次Testswere使用三个指标评估标准生物识别数据库的BucosedMethods的性能,即匹配融合时间,开销和真正的阳性率。从实验结果中,与现有方法相比,所提出的PI-Medmethod将计时融合时间和截止值减少47%和45%。类似地,与现有方法相比,所提出的PI-Med方法将在33%提高真正的阳性率。 (c)2020由elsevier b.v发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号