首页> 外文期刊>Image and Vision Computing >Deep manifold clustering based optimal pseudo pose representation (DMC-OPPR) for unsupervised person re-identification
【24h】

Deep manifold clustering based optimal pseudo pose representation (DMC-OPPR) for unsupervised person re-identification

机译:无监督者重新识别的基于深度歧体聚类的最优伪姿态表示(DMC-OPPR)

获取原文
获取原文并翻译 | 示例

摘要

Person re-identification (re-ID) is highly complex in a diverse surveillance environment. The existing person re ID methods are evaluated as a closed set problem with limited environmental variation. It is highly challenging to estimate the diverse poses of a dynamically crowded environment using the traditional unsupervised person re ID methods. To resolve this issue of handling complex diverse poses and camera angles, a contextual incremental multi-clustering based unsupervised person re-ID method have been proposed. Cam-pose based optimal similarity distance threshold is determined to label the unlabeled person re-ID images efficiently. Frequent intra and inter-camera pseudo pose sequences are represented with optimal distance threshold. This resolves the over fitting issue created by the dominant samples of an identity and reduces the source-target domain gap. The experimental results show the supremacy of our proposed method over the existing unsupervised person re-ID methods in handling complex poses and camera angles in an incremental self-learning diverse surveillance environment. (C) 2020 Elsevier B.V. All rights reserved.
机译:人员重新识别(RE-ID)在不同的监视环境中非常复杂。现有人RE ID方法被评估为具有有限的环境变化有限的封闭式问题。使用传统无监督的人的RE ID方法估计动态拥挤的环境的不同姿势是非常具有挑战性的。为了解决处理复杂多样化的姿势和相机角度的这个问题,已经提出了一种基于上下文的增量多聚类的无预测的人Re-ID方法。基于CAM姿势的最佳相似距离阈值被确定为有效地标记未标记的人重新ID图像。频繁的帧内和相互间的伪姿势序列用最佳距离阈值表示。这会解决由身份的主导样本创建的过度拟合问题,并降低了源目标域间隙。实验结果表明我们提出的方法对现有无监督的人重新ID方法的优势,以便在增量自学习各种监视环境中处理复杂的姿势和相机角度。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号